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I. INTRODUCTION

In real-world systems, failures happen. Reliably executing
manipulation tasks depends on handling errors and faults.
Typical approaches for logical task planning identify a sin-
gle execution path, without considering faults. This eases
computation, but presents a challenge when the robot must
respond to unexpected conditions. The principal challenge
in explicitly representing policies for logical domains is
handling the state space that is potentially in the number
of propositions. We can address this challenge by using a
linguistic, hierarchical representation for manipulation task
policies. Using a language-based policy representation, we
can compactly encode desired execution, potential faults, and
the appropriate response.

We consider two types of errors and how they may be
handled. First, we consider subtask or action failure, such as
a missed grasp, where a chosen action does not produce the
desired effect. Second, we consider uncontrollable events,
such a force limits, where some transition occurs unpre-
dictable or unavoidably. In both of these cases, we can use
a language-based approach to continue and recover.

This approach integrates formal language theory, logical
planning, and discrete event system control. Formal language
can model both computation and discrete dynamics [5], [9].
A formal language is a set of strings, and a string is a
sequence of atomic symbols. This approach has been applied
to robots [7], [8], [3]. Different aspects of the relationship
between planing, temporal logics, and language have also
been explored. SAT-solvers have proven effective for both
planning [6] and model checking [1]. Generating plans with
loops is analyzed in [10]. [4] considers infinite-string Büchi
automata for solving planning problems, and [2] shows a
translation from Linear Temporal Logic to the Planning
Domain Description Language (PDDL). In this work, we
apply language and automata methods to policy generation
for fault handling.

II. PLANNING DOMAIN LANGUAGES

Logical planning domains correspond to formal languages
over propositions and actions A planning domain defines
interleaved sequences of state assignments and action sym-
bols. Starting from some initial state S, we can select
actions which lead to subsequent states. The domain defines
a set of these sequences which are the potential plans. This
corresponds to the definition of a formal language, which is
also a set of sequences of symbols. A planning domain is a
formal language, whose strings are the permissible plans.

The formal language view provides a few techniques to
compact the representation: (1) state minimization of a finite
automaton, which my run directly from the set of logical

actions, (2) compact, context-free forms for hierarchical
domains, and (3) independence conditions to enable separate
solutions to subgoals.

To minimize state, we modify Hopcroft’s algorithm to
operate directly on the logical planning domain, avoiding
an intermediate, exponentially sized automaton.

To automatically compact hierarchical tasks, we identify
repeated submachines in the automaton. A submachine is
an automaton containing a subset Q′ of overall states Q
and the edges corresponding only to Q′. A submachine
appearing more than once is replaced at each occurrence in
the initial automaton with a nonterminal symbol reference
to the submachine, compacting the representation by storing
equivalent submachines only once.

To further compact the automata, we consider the nec-
essary conditions to independently achieve two different
subgoals. Informally, subgoals are independent if we can
develop plans and policies for one subgoal without negating
other subgoals. Independent subgoals can thus be solved by
concatenating plans and policies, turning a potential product
of automata states into merely a sum.

III. ERROR REPRESENTATION AND RECOVERY

Subtask Failure: Manipulation subtasks may not always be
executed correctly. For example, grasps may miss, objects
may be dropped, and parts may not align. To reliably execute
an overall task, a robot should gracefully handle these errors.
We consider the issue of subtask failure by extending the
logical planning domain to include alternative effects of
actions.

Definition 1 (Alternative Propositional Planning Domain):
D = (Φ,K, S0,Γ), where Φ is the finite set of propositions,
and K is the set of actions. Each Ki = (α, β, κ,E), where
α ⊆ Φ is the set of propositions which must be true before
execution, β ⊆ Φ is the set of propositions which must be
false before execution, κ is the action symbol, and E is the
set of potential effects of the action (a, d) where a ⊆ Φ
is the set of propositions made true by execution, and
d ⊆ Φ is the set of propositions made false by execution.
A state S is an assignment of propositions Φ. A set of
states Θ corresponds to a boolean formula over Φ. S0 is
the initial state. The goal condition Γ is a list of subgoals
in Φ× {true, false}.

This variation on planning domains can be readily used
with the techniques introduced in Sect. II. The key difference
is to consider the alternative effects when using the variation
of Hopcroft’s algorithm to generate the initial minimum state
automaton. When computing the predecessor states of some
set, we must consider whether any alternative effect of each
action leads to the current set. If so, then that action and
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Fig. 1. Potential Maniplations faults. (left) Missed grasp. (middle) Heavy object. (right) Uncontrollable obstacle.

effect denotes a valid predecessor. Once we have this initial
automaton, then we can directly apply the previous methods
for computing hierarchical decompositions and solving for
independent subgoals.
Uncontrollable Events: While a robot can choose which
discrete action to attempt, some discrete events may be
uncontrollable. These events may represent system faults,
hardware limits, or actions of other agents or humans.
Controllable events may be blocked by a supervisor, while
uncontrollable events may not. Control in the presense of
uncontrollable events is well studied in the context of discrete
event systems. Now, we relate this approach to logical task
planning.

In general, we can test if system G is controllable with
regard to specification S by considering prefixes on the con-
trolled system G′ which may be followed by an uncontrolled
event. The prefixes of X are given as X̃ . All prefixes of the
controlled system G′ followed by an uncontrollable event
which are prefixes of the original system G must also exist
in G′:

G′ = G ∩ S G̃′Zuc ∩ G̃ ⊆ G̃′ (1)

By representing logical planning domains using language,
we can directly apply this result to uncontrollable events
within those domains. The planning domain itself corre-
sponds to system G and the goal corresponds to a spec-
ification S which is the set of all strings leading to the
desired state. Then, we can apply (1) to check if this goal is
achievable given the uncontrollable events.

IV. CONCLUSION

We have proposed a language-based approach for repre-
senting manipulation policies and error-recovery. The lan-
guage form enables both more compact representation and
additional analyses to handle failures. Crucially, languages
explicitly describe the multiple paths that occur due to fail-
ures. This accounts for alternative outcomes of manipulation
actions. In addition, we show how to apply the controllablity
results from discrete event system control to manipulation
domains using the language representation. These results
enable more reliable manipulation through correct fault re-
sponse.
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Fig. 2. Example grasping domain for bimanual manipulation and the
corresponding policy automaton. Faults include failed grasps, heavy objects
require lifting with two hands, and limits which require stopping the motion.
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