
A Policy Representation for Humanoid Manipulation Tasks based on
Kinematic Constraints*

Michael Grey1

I. INTRODUCTION

In the interest of quickly generating viable robot motions
that require minimal real time control and sensing for suc-
cess, we build on the task constrained motion planning [1]
and Constrained Bi-directional Rapidly exploring Random
Tree (CBiRRT) [2] framework. CBiRRT is a probabilisti-
cally complete motion planning algorithm which is able to
rapidly generate motion plans in high dimensional space
while respecting task constraints. CBiRRT works by growing
random trees from a set of start nodes to a set of goal nodes.
Each node must satisfy the task’s feasibility constraints and
cannot be further than some (user-defined) distance from
its parent node. Trees are grown by alternating between
random extensions (where a branch is grown directly toward
a randomly selected point in configuration space) and “con-
nection” attempts which try to immediately close the gap
between a start and goal tree. In practice, this approach offers
an effective balance between exploration and exploitation.
Since humanoid robots are high degree of freedom systems
with a wide variety of constraints, CBiRRT is well suited for
planning in this domain.

However, one pitfall of CBiRRT is that its speed drops
off significantly when the constraint manifold is a much
lower dimension than the configuration space. To address
this, we use CBiRRT while assuming the robot undergoes
quasistatic motion. This allows us to plan a path through
joint space without needing to consider joint velocities.
Determining appropriate joint velocities is handled in post-
processing. If joint velocities were incorporated explicitly in
the planning task, it would double the dimensionality of the
configuration space while introducing differential constraints.
Those differential constraints produce a constraint manifold
that has half the dimensionality of the configuration space,
and forces child nodes to be dependent on their parent nodes.
The former results in slower exploration and the latter is
prohibitive for making connection attempts between trees.

II. CONSTRAINT FUNCTIONS

There are four types of constraints which are crucial for
humanoid robot manipulation tasks: Balancing constraints,
end-effector pose constraints, collision constraints, and joint
torque constraints. Some constraints are resolved using re-
cursive hierarchical nullspace projection [3] while others
are resolved by simply rejecting configurations that violate

*This work was supported by DARPA award D13AP00047
1Michael Grey is a doctoral student in the School of Interac-

tive Computing, Georgia Institute of Technology, Atlanta, GA 30332
mxgrey@gatech.edu

them. Typically, a constraint with lower dimensionality than
the configuration space is resolved using projection while
constraints with wide-open manifolds use rejection.

A. Balance Constraints

A humanoid robot must keep its center of mass above its
support polygon in order to maintain quasistatic balance. In
some scenarios, the balance constraint could be maintained
by rejecting configurations which violate it. However, in a
challenging manipulation task, it is unreasonable to simply
hope that balanced configurations will be sampled, so a
projection operation is needed. We use the center of mass
Jacobian method to drive the robot’s center of mass into its
support polygon.

A more physically meaningful constraint would be to keep
the Zero Moment Point (ZMP) above the robot’s support
polygon [4], but as discussed earlier, the configuration space
of the plan only includes joint position and assumes zero
instantaneous velocity, so the ZMP constraint would reduce
to a simple center of mass constraint. A consequence of the
quasistatic assumption is that if a configuration’s center of
mass is on the edge of the support polygon, the ZMP might
be pushed past the support polygon once the velocity of
the trajectory is considered. The magnitude of this violation
will scale nonlinearly with the magnitude of the velocity,
but the violation will approach zero as the magnitude of
instantaneous joint velocities approaches zero. In theory, this
means that a plan generated with quasistatic assumptions
could be infeasible, because it would require the trajectory
to come to a full stop and then remain stopped in order
to maintain balance. However, in practice, a conservative
estimate of the support polygon allows for a margin of error
that will allow the robot to continue moving, albeit slowly,
even as the center of mass grazes the estimated support
polygon. In addition, optimizing the trajectory during post-
processing can eliminate this concern altogether.

B. End-effector Constraints

In order to handle end-effector constraints, we employ
Task Space Regions [5]. Task Space Regions provide a
convenient and generalized way of describing and solving
end effector constraints, including articulated constraints.
A critical example of how TSRs are used for planning
manipulation tasks is for finding kinematically feasible grasp
configurations. We assume that any given target object has
a set of viable grasp points or grasp regions and then we
represent those points or regions as a set of TSRs.



Additionally, we must constrain both feet to remain sta-
tionary during a plan. Any relative motion between the
feet while both are being used for support would produce
dangerous internal forces inside the robot which could result
in mechanical or electrical damage. We do not consider the
possibility of taking a step during a manipulation motion
plan. If foot steps need to be taken, this should be handled
by a footstep and walking planner.

C. Collision Constraints
In wide-open environments, collision constraints may be

handled by simply rejecting configurations which exhibit
collisions. Alternatively, using convex collision geometries
allows configurations to be projected out of collision using
gradient descent like in [6] and [7]. Escaping collisions using
gradient descent can be useful in cluttered environments
where the passages between obstacles are thin. Examples
of the kind of information that can be derived from convex
geometries can be seen in Figure 1. The large dots represent
the deepest points of intersection, and the arrows show which
way a geometry could be moved in order to escape collision.
Applying inverse kinematics methods to that error vector
enables the planner to rapidly escape collisions without
relying on random sampling.

(a) Collision with an environment object

(b) Self-collision

Fig. 1: Convex collision geometries and the error vectors that can
be obtained from them

D. Torque Constraints

A fourth constraint which may be important to consider
(depending on the strength of the robot compared to the task
that is being planned) is torque constraints. Since physical
motors have torque limits, any configuration whose joint
torques exceed those limits must be considered invalid. The
probability of randomly sampling a configuration which
violates torque limits is usually low enough that simply
rejecting invalid configurations (instead of trying to project
them) should be suitable. The Jacobian Transpose can be
used to compute the static joint torques in the arms for
a given configuration, however computing joint torques in
the legs may require assumptions about how the weight is
distributed between the supporting feet.

E. Context-Sensitive Constraints

A new concept we are exploring is constraints which de-
pend on some contextual parameter that would not normally
be included in the configuration space. The first motivating
example of this concept is for lifting heavy objects [8] where
the constraint manifold is a function of how much of the
object’s weight is being supported by the robot. Example
projections of this manifold can be seen in Figure 3 (these
manifolds are only projected so that they can be visualized).
We introduce the concept of the Virtual Task Dimension
(VTD) to enable the robot to plan the way it transfers the
object’s weight from the environment to its end effector. This
creates a new constraint manifold (seen in Figure 3c) that
is able to bridge the two disconnected manifolds (seen in
Figure 3b). This new constraint manifold uses all the same
constraint functions as the original, except that the balancing
constraint function has an additional variable: the fraction
(from 0.0 to 1.0) of the target object’s weight that the robot
is supporting. The numerical value of the VTD is used to
represent this new variable. Figure 2 shows the DRC-HUBO
robot lifting a metal truss, using a motion that was planned
with this approach.

While this is the first use case of the VTD, we believe it
should be capable of much broader applications. There are
two ideas currently being considered:

1) Planning in a way that exploits friction by conidering
the trade off between lifting and dragging. The VTD
would represent the same idea as the heavy lifting
problem (fraction of object’s weight supported by
the robot) and the resistive force due to friction can
be computed as a function of the VTD. This way,
if completely lifting an object would violate torque
limits, and completely pushing an object would violate
torque limits, the planner could automatically find
a compromise between the two and explore those
possibilities using the VTD.

2) Plans that can let the robot lean against the environ-
ment. The VTD would represent the contact force of
an end effector that is pressed against the environment,
for example a hand that is pressed against the surface
of a table. The feet would still be used as the main



(a) Grabbing the truss (b) Raising the truss (c) Placing the truss

Fig. 2: DRC-Hubo performing a heavy lift task

providers of support, and the support polygon would
remain unchanged. However, the additional contact
force could be used to help keep the overall ZMP of the
robot inside of the support polygon even as the robot
reaches over the table to grab an object that would
normally be outside of its reach.

III. FINDING START/GOAL CONFIGURATIONS

Before CBiRRT can generate a path, it is necessary
to determine start/goal configurations. These configurations
must satisfy all of the feasibility constraints (i.e. they must be
balanced and collision-free) in addition to achieving an ob-
jective. The objective can also be represented as a constraint,
ideally as a Task Space Region, which describes where the
robot should grab or where it should deliver its payload. Be-
cause of the high dimensionality of humanoid robot systems
and the nonlinearity of the constraint functions, analytical
solutions for satisfying all of these constraints simultaneously
do not generally exist.

Therefore, in order to solve all the simultaneous con-
straints, we used stochastic gradient descent. In wide-open,
easy environments it might be possible to simply use or-
dinary gradient descent, but when dealing with cluttered or
challenging environments, it is common to get caught in local
minima.

Rather than beginning gradient descent attempts from
random configurations, we start them from seeding configu-
rations which are known to be far from singularities or local
minima. Samples of the seeding configurations which were
used in this project can be seen in Figure 4.

IV. PRACTICAL CONSIDERATIONS

Whole body planning is generally difficult due to its high
dimensionality and tight constraints. In this section, we will
highlight various techniques which help to make it tractable.
Some of these techniques are based on the particular use of
DRC-Hubo, but may also apply to other humanoid robots.

A. Floating Base Method

Each leg on DRC-Hubo has 6 degrees of freedom, and
as mentioned in subsection II-B, we constrain both feet to
remain stationary. This means that 12 dimensions of the joint
space are fully constrained. If these joints were included

(a) Light-weight object (b) Heavy object

(c) Projection of valid Pelvis X/Y translations
along with VTD for the same heavy object as
Figure 3b.

Fig. 3: These are projections of two components (Pelvis X and
Y) from the 22 dimensional configuration space during a lift.
Pelvis X and Y are the X/Y translations of the robot’s root Pelvis
link. Blue regions are valid while the robot supports none of the
object’s weight; red regions are valid while the robot supports all
of the object’s weight. In Figure 3a the purple region represents
an overlap of the blue and red regions, indicating that there do
exist lifting configurations that are balanced both with and without
the object’s weight supported. Figure 3b has no such intersection,
therefore there is no way to plan a valid path from the blue to the
red without introducing the VTD. Figure 3c shows the space of
valid configurations for Figure 3b once the VTD is introduced; the
planner is able to explore this space freely in order to find a valid
path from a point in the blue region to a point in the red region.



Fig. 4: Examples of useful seeding configurations.

in the configuration space that is used by the planner, an
inordinate amount of time would be spent projecting the legs’
joint values onto their constraint manifold. Instead, we leave
the legs’ joint angles out of the configuration space used for
planning, and simply use the six degrees of freedom (three
translational and three rotational) of the robot’s pelvis (root)
link. Imagine that the robot’s legs are removed and the pelvis
could float around and rotate itself freely.

Analytical inverse kinematics is used to ensure that the
robot’s floating-base poses are feasible. If no valid leg joint
configuration exists for a given pelvis pose, the analytical
IK is guaranteed to report it. Moreover, even though a
6-DoF analytical IK will usually produce 8 unique joint
configurations, the legs on the DRC-Hubo can only ever
have up to one valid joint configuration once the legs’
joint limits are taken into account. This means that there
is no redundancy to account for while generating a plan,
and so the planner is still probabilistically complete even
without explicitly considering these degrees of freedom. We
implicitly plan the joint angles of the legs by planning the
six degrees of freedom of the pelvis and verifying that there
exists a valid set of leg configurations for any given pelvis
pose.

B. Task Decomposition

Whenever the constraint manifold of a task has a bottle-
neck, it is best to decompose the task into two parts where
each part takes place on either side of the bottleneck. For
example, a pick-and-place task has a bottleneck when it
comes to reaching for the object. Since valid grasps are
often represented as a finite set of points (or very small
regions), the plan needs to pass through a low-dimensional
constraint manifold. Instead of making the planner find a path
through this bottleneck by exploring, it is far more effective
to decompose the task into a picking task followed by a
placement task. Then stochastic gradient descent can be used
to find an entry point to the bottleneck, and a goal tree can
be grown from there.

C. Trajectory Generation

Using CBiRRT generates a path through configuration
space, but execution on a robot requires a trajectory which
specifies joint values as a function of time. For this we used
a time-optimal trajectory generation algorithm by Kunz [9].
This algorithm accepts as input a path as well as maximum

speeds and accelerations for each dimension in the configu-
ration space. For the maximum speeds and accelerations, we
choose small values to ensure that the robot always maintains
quasistatic behavior.

V. CONCLUSIONS AND FUTURE WORK

For humanoid robots to successfully perform physical
tasks, there are crucial physical constraints that need to be
satisfied. A wealth of techniques from classical mechanics
and control theory can be utilized in planners to math-
ematically guarantee the satisfaction of those constraints.
These guarantees are very appealing for the sake of safety
and performance. However, there are obvious weaknesses
to this approach, in particular that they require experts in
mechanics to design and program them. Learning techniques
are appealing because they shift the responsibility for success
from a human engineer to the robot itself, but learning
techniques tend to require a prohibitive amount of failure
before positive results can be obtained. On a large-scale
humanoid robot, failure is expensive and training is very time
consuming. A powerful research topic might be to merge the
advantages of constraint satisfaction and learning. Perhaps
constraints can be used as a basis for algorithms to learn
from, or maybe learning algorithms can be taught to design
constraint functions to plan with.

ACKNOWLEDGMENTS

This work was funded by the DARPA Young Faculty
Award given to Mike Stilman, who tragically passed away
before this project started. Nevertheless, we know he would
have been proud of our achievements and excited to see
where this work leads.

REFERENCES

[1] M. Stilman, “Task constrained motion planning in robot joint space,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007. IROS 2007. IEEE, 2007, pp. 3074–3081.

[2] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” in IEEE International Conference
on Robotics and Automation (ICRA ’09), May 2009, pp. 625–632.

[3] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” in International Journal
of Humanoid Robotics, 2005, pp. 505–518.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on, vol. 2, Sept
2003, pp. 1620–1626 vol.2.

[5] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” International
Journal of Robotics Research (IJRR), vol. 30, no. 12, pp. 1435 – 1460,
October 2011.

[6] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in ICRA’09.
IEEE International Conference on Robotics and Automation, 2009.
IEEE, 2009, pp. 489–494.

[7] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[8] M. X. Grey, S. Joo, and M. Zucker, “Planning heavy lifts for humanoid
robots,” in 14th IEEE-RAS International Conference on Humanoid
Robots, 2014, Nov 2014.

[9] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” 2012, p. 209.


	Introduction
	Constraint Functions
	Balance Constraints
	End-effector Constraints
	Collision Constraints
	Torque Constraints
	Context-Sensitive Constraints

	Finding Start/Goal Configurations
	Practical Considerations
	Floating Base Method
	Task Decomposition
	Trajectory Generation

	Conclusions and Future Work
	References

