
Getting There: Using Environment Objects To Facilitate Task
Completion In Unknown Environments

Martin Levihn Henrik Christensen

Abstract— Robots should be able to reason about using
environment objects to assist task completion. If faced with
an unexpected situation, such as a liquid spill obstructing the
only path to the goal, robots should be able to reason about
using environment objects to overcome the obstruction rather
than simply declaring failure. In this paper we present our
preliminary results for a framework that enables robots to
make progress towards task goals even in the presence of
obstructions. The framework enables robots to determine online
if an obstruction can be circumvented or needs to be overcome.
For the latter case, the framework guides the robot to search for
and utilize an environment object to overcome the obstruction.

I. INTRODUCTION

Experienced humans do not hesitate to use their environ-
ments. Robots shouldn’t either. Suppose one is trapped in
a room with burning gasoline. The human searches the
environment for something that can be placed over the
gasoline, finds a long enough board, places it over the fire
and escapes. Typically, such situations can not be anticipated
a-priori and no predetermined action plan exists. Rather, the
encountered situation and present objects have to guide the
actions online. Possessing such capabilities becomes essen-
tial for robots that are expected to operate autonomously in
complex, unstructured environments such as disaster areas.

In this paper we present the first framework that allows a
robot to reason online about using an environment object
to facilitate its task completion. To understand the value
of such a framework, consider the example visualized in
Figure 1(a) in which the robot is tasked with escaping the
building. As typical for such cases, we assume that the
robot has access to a map containing the static environment
properties, but does not know the existence, size or location
of non-static objects. Not knowing that an oil barrel fell over,
blocking the only exit, the robot computes a motion plan for
escaping the building using the exit. As the robot executes the
motion plan it obtains sensor readings about the environment
and eventually detects the oil spill. Realizing that there is
no other way to exit the building, the robot searches its
environment. Finding a long enough board in a neighboring
room, the robot grasp a board, places it over the oil spill and
escapes. Figure 1(b) visualizes the final configuration of the
environment.

While full autonomous execution of this example is work
in progress, we present the overall framework and subrou-
tines necessary to achieve such behavior. Our framework
builds upon execution monitoring and constraint relaxed

The authors are affiliated with the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, Georgia 30332,
USA. Email: levihn@gatech.edu, hic@cc.gatech.edu

(a) Environment Configuration.

(b) Final Environment Configuration.

Fig. 1. Example execution of the proposed framework.

planning to determine if the current motion plan is obstructed
and, if that is the case, whether the obstruction can be
avoided or needs to be resolved. To resolve an obstruction,
the framework determines necessary object properties for the
constraint at hand (e.g. dimensions) and searches for such
an object in the environment. If such an object is found,
the algorithm guides the robot to pick it up and use it to
overcome the obstruction.

The remainder of the paper is organized as follows:
Section II presents related work and Section III provides
an overview of the proposed framework. After discussing
implementation details in Section IV, the paper concludes
with final remarks in Section V.



constraint relaxed path planning

path contains
obstructions?

sense environment 

no

path still
clear?

no

execute path as
far as sensed

yes

determine necessary 
object atributes

yes

search for object

found a
suitable
object?

mark obstruction
as unsolvable

no

use object to
clear obstruction

yes

Fig. 2. Flowchart of the proposed framework.

II. RELATED WORK

Most existing forms of robotic object use are focused on
accurate positioning and control of specific tools such as
welding instruments [5], spray guns [4], drills [7] and
surgical instruments [3, 6]. In all of these scenarios the robot
performs a well defined task with the tool. While the control
methods developed for these scenarios are complementary
to the proposed system, we do not assume that the robot
is given a specific task to accomplish with a specific object.
Instead, the robot has to autonomously determine if and how
it needs to use environment objects to accomplish its overall
task.

As an initial step towards this goal, we presented a
system that allowed a HRP-2 robot to autonomously utilize
environment objects to create itself a path in [11]. The robot
used a box to create a stair step for itself and placed a
board on the ground to cross a gap. Similarly, in [9] we
presented a planning system that allowed a robot to reason
about force transmission properties of environment objects.
However, both methods required full a-priori environment
knowledge.

In contrast, the framework presented in this paper is
designed for realistic cases in which the robot does not
possess full a-priori knowledge but rather needs to obtain
the necessary information online.

III. OVERVIEW

We now provide an overview of the proposed system before
discussing implementation details in the following section.
We assume that the world is static and that the robot has
access to a map containing immobile environment objects
such as walls and stairs. We do not assume that the robot
has knowledge of the existence or location of manipulable
environment objects prior to any sensing actions.

A. Framework

To obtain an initial motion plan, the framework uses a
constraint relaxed path planning system similar to [11]. In
contrast to traditional motion planning systems that attempt
to find a sound path to the goal [8], constraint relaxed
planning systems might return a path that violates robot

constraints, such as moving through obstacles. While the
resulting path might not directly be executable by the robot,
it provides two crucial insights. First, it establishes whether a
low cost path to the goal without obstructions exists. Second,
if no such paths exists and obstructions need to be overcome,
it provides information to subsequent planning steps about
where and how exactly the environment needs to be modified.

Dependent on the output of the constraint relaxed path
planning system, the framework branches. If the constraint
relaxed planning step finds a path to the goal without
obstructions, the robot is tasked with moving along the path
while continuously sensing the environment for potential
obstructions. In case an obstruction interesting the current
path is detected, the algorithm re-plans a path to the goal.

In case either the initial path or the updated path contains
an obstruction (that is no low cost path circumventing the
obstruction could be determined), the framework proceeds
by guiding the robot to search the environment for an
object that can be used to overcome the obstruction. To
achieve this, the framework first determines the necessary
properties any suitable object needs to have and then searches
the environment for such an object. Note that this process
stands in contrast to traditional object recognition problems
(e.g. [12]) in which the task is to find a specific object. Here,
the goal is to find any object that is usable by the robot. If a
suitable object is found, the frameworks proceeds by guiding
the robot to use the object to overcome the obstruction. If
this process fails, the obstruction is marked as unresolvable.
In either case, the algorithm loops. Figure 2 summarizes the
proposed framework.

IV. IMPLEMENTATION

While the previous section provided a general overview of
the proposed framework, we now describe details of our ac-
tual implementation and demonstrate example outputs of our
implementation for a simple environment. We implemented
the proposed framework in simulation on the PR2 robot using
Gazebo and ROS [13]. We focused on cases where liquid
obstructions could prevent the robot from reaching its goal.

A. Detecting Obstructions

To detect liquid obstructions in the environment, we are
utilizing a Kinect sensor mounted to the head of the PR2.
First, we are registering the point-cloud information obtained
by the Kinect’s depth sensor with the color information
collected by the Kinect’s RGB camera. We then convert
the resulting data structure into an image where each pixel
is also linked to its depth information. This image is then
thresholded according to color differences to the ground. If
a significant difference is detected, the depth information as-
sociated with the pixels is used to obtain the 3D coordinates
of the obstruction’s bounding polygon.

While this process is sufficient for cases where the robot
either sees the complete obstruction or no obstruction at all,
it might cause many unnecessary calls to the path planning
system for obstructions that are not being observed in its
entirety from the beginning. To minimize the occurrence of
partial obstruction reportings, our implementation does not



(a) Obstruction detection. The green polygon indicates the detected obstruc-
tion.

(b) Constraint relaxed planning step output. The red portion of the plan
indicates a constraint violation, requiring the robot to resolve the constraint
prior to following this part of the plan.

Fig. 3. Obstruction detection and constraint relaxed planning step examples.

forward the obstruction information to the planning system
until either the obstruction’s dimensions do not increase
anymore, or the robot is getting too close to the obstruction.
Figure 3(a) visualizes an example output of this obstruction
detection method for a simplified version of the scenario
shown in Figure 1.

B. Constraint Relaxed Planning

If the obstruction detection algorithm reports an obstruc-
tion to the planning system, the obstruction is added to
the internal cost map and re-planning is triggered. In our
implementation, the constraint relaxed planning step is re-
alized as an A* search on a 2D cost map presentation
of the environment. As mentioned above, collisions with
obstructions are considered as soft constraints rather than
hard constraints. To avoid unnecessary constraint violations,
a heuristic cost penalty is applied for each initial intersection
with an obstruction. Figure 3(b) shows the output of the
constraint relaxed planning step following the detection of
the oil spill in Figure 3(a). The output indicated that the
robot has to cross the oil spill in order to reach the goal.

C. Object Search
Given the output of the constraint relaxed planning step, the
system now abandons the process of attempting to reach
the goal through pure navigation and the robot is tasked
with finding a suitable object in the environment to help
it cross the oil spill. As mentioned above, in contrast to
most existing research in object detection (e.g. [10]), this step
does not focus on detecting a known object, but rather on
finding any object that the robot could utilize to overcome the
obstruction. To achieve this, our object detection algorithm
is based on the output of the constraint relaxed planning
step. Recall that the constraint relaxed planning step returns
the exact location and dimensions of the obstruction that
is currently blocking the robot. We can now utilize this
information to determine the minimum dimensions for a
suitable object and use these dimensions to guide the search.
For the example visualized in Figure 3, we need to find an
object that has at least the length of the oil spill and is at least
as wide as the robot base. While reasoning about most likely
locations of candidate objects is an interesting research area
in itself (e.g. [14, 15]), our implementation takes advantage
of simple heuristics to explore the environment such as on-
the spot rotations and wall following.

Using the just determined dimensionality requirements,
the algorithm takes scans of the environment, segments the
resulting point-clouds into clusters and rejects all clusters
not fulfilling the size requirements. Further, any clusters that
are above a size threshold, indicating that the robot would
likely not be able to manipulate the corresponding object,
are rejected. The remaining clusters, representing potential
candidate objects, are then sorted based on a custom cost
function. We used a scoring function that attempts to capture
the notion of “manipulable” using surface smoothness and
object width. In the order defined by the cost function,
the robot then attempts to use the objects to overcome the
obstruction.

Figure 4(a) visualizes an example output of the obstacle
detection method.

D. Grasping and Dropping
If a candidate object has been found, the robot needs to
navigate to it and grasp it. For navigation path planning
without the risk of needing to overcome obstructions, we are
using the default move base package provided in the ROS
navigation stack [1].

In order to grasp the object, we use the cluster information
to determine pre-grasp configurations for the grippers. These
configurations are computed to be 5cm from the edges of the
cluster on each side. Given these pre-grasp configurations
we utilize the MoveIt! package [2] to move the grippers into
those configurations. The arms are then controlled to move
the grippers inwards to establish contact with the object.
Upon contact, the grippers are closed and the shoulder joint
of the each arm controlled such that the object will be lifted
from the ground.

If the object is successfully grasped, the robot moves to
the obstruction, aligns itself with the obstruction according
to the initial path direction and executes a drop motion.



(a) Robot detects suitable obstacle.

(b) Robot executes grasping subroutine.

(c) After a successful drop of the object the algorithm loops and a path using
the object is found.

Fig. 4. Constraint resolution example.

We implemented the drop motion by reverting the grasp
motion with the addition of a slight motion of the robot
base in the direction of the obstruction. This is done to
ensure that the object falls in the correct direction. If the
drop was successful, the algorithm marks the new location
of the object as traversable space and re-starts the constraint
relaxed planning system. Figure 4(c) shows the behavior of
the robot after a successful drop of the object.

V. CONCLUSION

While this paper reflects work-in-progress, to our knowledge,
it presents the first framework that allows robots to reason

online about using environment objects to help them achieve
their goal.

We anticipate that the final implementation of the proposed
framework will also enable the robot to test relevant object
properties, such as applying a certain force to the object
prior to deciding to use it as a bridge. We are planning to
provide an open-source implementation of our framework to
allow other researchers to extended the overall framework or
replace individual subroutines with their own.

We expect that future work based on the concepts pre-
sented in this paper will allow robots to achieve the in-
telligent goal-orientated behavior which is characteristic of
human beings.

ACKNOWLEDGMENTS

This work is dedicated to the memory of Mike Stilman,
whose encouragement, support and enthusiasm will never
be forgotten.

This work was supported by the ONR under grant
N000141210143.

REFERENCES

[1] move base package. http://wiki.ros.org/move base. Accessed: 2014-
10-25.

[2] Moveit! package. http://moveit.ros.org. Accessed: 2014-10-25.
[3] Ron Alterovitz, Ken Goldberg, and Allison Okamura. Planning

for steerable bevel-tip needle insertion through 2d soft tissue with
obstacles. In IEEE Int. Conf. on Robotics and Automation, 2005.

[4] Heping Chen, Weihua Sheng, Ning Xi, Mumin Song, and Yifan Chen.
Automated robot trajectory planning for spray painting of free-form
surfaces in automotive manufacturing. In IEEE Int. Conf. on Robotics
and Automation, 2002.

[5] George E Cook. Robotic arc welding: research in sensory feedback
control. Industrial Electronics, IEEE Transactions on, (3), 1983.

[6] BL Davies, SJ Harris, WJ Lin, RD Hibberd, R Middleton, and
JC Cobb. Active compliance in robotic surgerythe use of force control
as a dynamic constraint. Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine, 211(4), 1997.

[7] Myron A Diftler, CJ Culbert, RO Ambrose, R Platt Jr, and WJ Blueth-
mann. Evolution of the nasa/darpa robonaut control system. In IEEE
Int. Conf. on Robotics and Automation, 2003.

[8] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[9] M. Levihn and M. Stilman. Using environment objects as tools:
Unconventional door opening. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014.

[10] Martin Levihn, Matthew Dutton, Alexander Trevor, and Mike Stilman.
Detecting partially occluded objects via segmentation and validation.
In IEEE Workshop on Robot Vision (WoRV), 2013.

[11] Martin Levihn, Koichi Nishiwaki, Satoshi Kagami, and Mike Stilman.
Autonomous environment manipulation to assist humanoid locomo-
tion. In IEEE Int. Conf. on Robotics and Automation, 2014.

[12] David G Lowe. Object recognition from local scale-invariant features.
In Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, volume 2, pages 1150–1157. Ieee, 1999.

[13] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[14] Lawson LS Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Manipulation-based active search for occluded objects. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on,
pages 2814–2819. IEEE, 2013.

[15] Lawson LS Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Not seeing is also believing: Combining object and metric spatial
information. ICRA, 2014.


