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Abstract— In recent years, several studies have suggested 

that improved performance of modern robots can arise from 

encoding commands in terms of motor primitives. In this 

context, dynamic movement primitives (DMP) appeared as a 

powerful tool for motion planning based on demonstration 

examples. This approach is currently used as a compact policy 

representation well-suited for robot learning. In this work, we 

focus on an important ability of humanoid robots employing 

DMPs as open-loop trajectory representations: the 

generalization of learned walking movements from a single 

demonstration. The goal is to demonstrate and evaluate how 

new movements can be generated by simply modifying the 

parameters of rhythmic DMPs learned in task space. The 

formulation in task space allows recreating new movements 

such that the DMP’s parameters directly relate to task 

variables, such as step length, hip height, foot clearance and 

forward velocity. The study is performed using the V-REP 

simulator, including the adaptation of the humanoid robot’s 

gait pattern to irregularities on the ground surface. 
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I. INTRODUCTION 

Humanoid robots have been developed to operate in real 

world environments and to deal with a variety of complex 

tasks. Developing the full potential of these robots is only 

possible by giving them the ability to reproduce, generalize 

and learn a given task. In this context, there is an increasing 

need to move away from robots that are pre-programmed 

explicitly towards those endowed with learning and 

adaptation abilities. The expected interaction and 

cooperation among humans and robots imposes additional 

restrictions in terms of movement appearance, promoting 

those that look natural and predictable. In this line of 

thought, a large body of research has been dedicated to the 

use of human motion capture systems for extracting 

observed poses as input for teaching robots to perform from 

simple movements to complex skills.  
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However, there are several challenges when transferring 

skills from humans to robots [1], [2]. The first challenge is 

to understand the principles governing human movement 

coordination in order to select the most appropriate 

methodology to encode the observed example trajectories. 

Second, the motion planning approaches based on 

demonstrated examples require the evaluation of their 

ability to generalize to new situations. This means the 

ability of the robotic system to generate trajectories with 

similar kinematics and/or dynamics in areas of the work 

volume not covered during the training phase.  

Problems associated with learning biped walking 

behaviors from human data have been addressed using 

different frameworks, number of examples and tasks [3-5]. 

In this work, we focus on the problem of generalizing from 

a single demonstration in the specific task of biped 

locomotion. Here, rhythmic DMPs are employed as open-

loop trajectory representations. The main purpose is to 

evaluate how new movements can be generated by simply 

modifying the parameters of DMPs learned in task space. 

The generalization capability, which is the main focus of 

this paper, was studied and evaluated using an ASIMO [6] 

robot model in the V-REP simulation software [7].  

The remainder of the paper is organized as follows: 

Section II describes the proposed approach based on DMPs 

learned in the task space. Section III describes the 

experiments performed in this study. Section IV concludes 

the paper and discusses future work. 

II. METHODS 

The control of biped locomotion is a challenging 

problem mainly due to its nonlinear, multivariable and 

unstable dynamics. Additionally, there are two inherent 

characteristics of biped robots playing a key role in 

planning and control, namely the limited foot/ground 

interaction (unilateral constraint) and the discrete changes 

in the dynamics (time-varying dynamics) during the walking 

cycle as the system changes between single and double-

support phases. A commonly used control approach is to 

compute in advance desired motions using some form of 

pattern generator formulation (e.g., parameterized curves, 

optimization of some metric) or by acquiring teacher 

demonstrations aiming to transfer skills from humans to 

robots. This desired motions are then replicated and 
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modified online through feedback (e.g., according to a 

ZMP-based control law) in order to maintain the dynamic 

stability.  

Given the importance of autonomous behavior, humanoid 

robots are being designed more and more using 

neurobiological knowledge. In line with this, different 

approaches have been proposed in the robotics community 

for the representation of discrete and rhythmic movements. 

Dynamical system motor primitives have become a robust 

policy representation that facilitates the process of acquiring 

and improving the desired behavior [8]. The basic idea 

behind DMPs is to use an analytically well-understood 

dynamical system with convenient stability properties and 

modulate it with nonlinear terms such that it achieves a 

desired point or limit cycle attractor. The methodology 

transforms simple attractor systems with the help of a 

learnable forcing function term. The approach was 

originally proposed by Ijspeert et al. [9] and, since then, 

other mathematical variants have been proposed to generate 

discrete and periodic movements [10].  

DMPs exhibit a desirable property in the context of robot 

learning from demonstration: the system does not depend 

on an explicit time variable, giving them the ability to 

handle spatial or temporal perturbations. This property 

makes them attractive in order to create smooth kinematics 

control policies that can robustly replicate demonstrations. 

Additionally, its formulation includes a few parameters 

which allow changing the learned desired behavior. These 

parameters can potentially be used to adapt the learned 

movement to new situations in order, for example, to adapt 

the final goal position, the movement amplitude or the 

duration of the movement. However, the adaptation of these 

primitives to new situations becomes difficult when the 

demonstrated trajectories are available in the joint space. 

The problem occurs because, in general, a change in the 

primitive’s parameters does not correspond to a meaningful 

effect on the given task. This becomes an even more 

important concern for robots with many degrees-of-freedom 

(DOF). 

In this work, rhythmic DMPs are used for representing 

biped locomotion movements. The DMPs are formulated 

for each coordinate X, Y and Z of the two feet in task space, 

considering that the reference coordinate system is placed 

on the robot’s hip section. This accounts for a total of six 

DMPs whose outputs are converted, through an inverse 

kinematics algorithm, to the desired joint trajectories used 

as reference input to the low-level feedback controller. 

Table I summarizes the standard formulation used for 

describing each individual DMP. The periodic walking 

cycle is characterized by the amplitude of the oscillator, r, 

the frequency of oscillation, , and the offset, g.  

 

TABLE I: DEFINITION OF THE RHYTHMIC  MOVEMENT PRIMITIVES 
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The forcing function is dependent on the oscillatory 

canonical system and the exponential functions i are von 

Mises basis functions. Phase coordination between legs is 

provided by the canonical oscillators such that the left and 

the right limbs move 180 degrees out of phase. Based on 

this formulation, the main goal is to evaluate how new 

movements can be generated by simply modifying the 

parameters of rhythmic DMPs learned in task space. 

Therefore, the amplitude, frequency and offset of the 

learned walking pattern should be modified by scaling the 

corresponding parameters r,  and g, respectively,  

As stated before, the motion planning is accomplished by 

learning the Cartesian trajectories of the lower extremities 

of both feet (see Fig. 1 and Fig. 2). The proposed 

formulation allows generating new movements such that the 

DMPs’ parameters of each coordinate directly relate to task 

variables, such as step length, hip height, foot clearance and 

forward velocity. Furthermore, these locomotion variables 

are directly related with a set of high level motion goals, 

such as for example: (i) to maintain a constant forward 

velocity or, alternatively, to apply a small horizontal 

oscillation, (ii) to maintain a constant hip height or, 

alternatively, to apply a small vertical oscillation, (iii) to 

place the foot on the ground with zero velocity in order to 

reduce the impact effects and (iv) to lift the foot above the 

ground to avoid obstacles.  

 

Fig. 1:  Left and right foot trajectory as seen from the robot’s reference 

coordinate system. 
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Fig. 2: Left and right foot trajectory over a period superimposed with the 

modulated DMP. 

The benefits of the DMP modulation and generalization 

in task space were also verified in [11], in which the results 

show a lower generalization error. 

III. NUMERICAL SIMULATIONS 

Several experiments have been conducted to demonstrate 

the generalization of biped locomotion by changing the 

parameters of the learned DMPs. Here, two specific 

experiments are performed and the achieved results are 

discussed. The first experiment aims to evaluate the 

generalization from a single demonstration. The second 

experiment evaluates the robustness of changing the 

parameters of the learned DMPs by testing walking over a 

surface with irregularities in the form of small steps. In any 

case, numerical simulations are performed using an ASIMO 

model already available in the V-REP simulator library.  

A. Generalizing from a single demonstration 

First, we test the DMP approach trying to answer the 

following question: can the coordination of joint motions 

obtained from motion primitives fitted to one particular gait 

pattern be used to generalize to other situations?  The 

intention is to maintain the overall style of the demonstrated 

movements and its stable condition by a simple change of 

DMP parameters. On the one hand, since the DMPs are 

modulated in the task space, movement generalization can 

be easily performed by directly varying the DMP 

parameters, such as the amplitude (r), the starting (y0) or the 

goal position (g). On the other hand, since the feet 

coordinates are obtained in a referential located on the 

robot’s hip section, this means that the corresponding 

trajectories are periodic function of time. As a result, the 

amplitude of the oscillators represents the step length, the 

foot clearance and the hip height, depending on the 

coordinate axis.  

In this subsection, we assess how well the humanoid 

robot reproduces and generalizes a gait pattern from a 

single demonstration. The demonstration example takes into 

account domain knowledge, such as task-relevant 

parameters and stability conditions. The generalization 

performance uses a metric defined in the Cartesian space to 

evaluate the deviations in the trajectories of each foot. More 

specifically, this metric is defined as the root-mean-square 

error between the original movement performed for a given 

step length and forward velocity and the movement that 

results from generalizing the learned DMPs from a single 

demonstration (for the same step length and forward 

velocity parameters).  

Fig. 3 shows the results of the root-mean-square error 

between the original and the generalized movements 

expressed in terms of the circles radii (min average error is 

2.7mm and max avg. error is 2.65cm). These errors are 

evaluated for different step lengths and forward velocities. 

In this figure, the black circle represents the base DMP used 

for generalization. We can see that a change on speed has 

small effect on the error measure. On the other side, 

changing the step length has a significant influence on the 

error, which increases with larger steps.  
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Fig. 3:  Errors between the original movement and the generalization of 

the learned DMP for different step length and forward velocity parameters 

(error is scaled by 10, for representation purposes). 

B. Robustness on uneven ground 

Biped walking in irregular grounds depends on 

prediction about when the swing foot touches the ground. 

Hence, the robot’s behavior need to be modified online and 

the learned movement representation (its global shape) need 

to be adapted during the execution so that the robot can 

maintain its postural stability. Based on the same approach, 

we adjust online the DMPs parameters in order to properly 

incorporate this event-dependent behavior, while 

maintaining the overall movement’s duration. The appeal is 

that most humanoid robots have available ground contact 

information at the instant of impact of the swing foot with 

the ground.   



 

 

 

 

 

Fig. 4: Snapshots of the robot’s configuration for different locomotion parameters (up) and snapshots of simulation walking on uneven ground (bottom). 

Fig. 4 illustrates the adaptation of biped walking over a 

ground surface (unknown to the robot) with an irregularity 

in the form of a small step. The online adjustment of the 

DMPs parameters retains the advantages of the original 

formulation and performs robustly with small irregularities 

that, anyway, approximate well real environments 

IV. CONCLUSIONS 

In this paper, we presented a study and evaluation on the 

possibilities of generalization of biped locomotion with 

DMPs modulated from a single movement. More 

specifically, we use rhythmic DMPs learned in the task 

space that directly relates to locomotion parameters, such as 

step length, hip height, foot clearance and forward velocity. 

Numerical simulations show that the proposed formulation 

is well-suited for biped locomotion, namely to achieve 

robust steady state walking in uneven grounds. Further 

study is in progress to include a feedback term on the DMP 

formulation that will allow achieving better adaptation to 

new situations. Future work will address the capture of 

human motions with a VICON system.   
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