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I. INTRODUCTION

Trajectory optimization algorithms are actively used for
motion planning problems. They are not only outperforming
sampling-based algorithms in terms of planning time and
success rate but they also provide flexibility to augment task
constraints into the motion planning problem. These methods
are suitable for integrated task and motion planning such as
keeping a cup of coffee upright or fixing robot’s links to
specified poses for given time windows along the trajectory.
Zucker et al. [5] showed that motion planning problem can
be formalized as a non-convex and constrained optimization
problem and it can outperform well-known sampling-based
methods bidirectional RRT by Kuffner and LaValle [2] and
RRT* by Karaman and Frazzoli [1]. Later, Schulman et al.
[4] introduced TrajOpt algorithm which improved Zucker et al.
[5] work by using a numerical optimization algorithm and a
different collision checking method.

One of the widely used benchmarks for task and motion
planning is the autonomous pick an place task. From a
systems integration perspective, it poses several challenges
including 3D perception, motion planning, grasp synthesis, and
control. Each of these are active research areas, however, the
sequential nature of the pick and place task requires that these
components should work in a integrated manner. The robot
should take secondary task goals into account while planning
for primary tasks. For example, Mavrakis et al. [3] showed
that reasoning about the place pose to select a grasp pose can
improve overall pick and place performance.

As service robots are becoming more available, there is an
increasing need for the task and motion planning methods
that work in cluttered and dynamic environments in a fast
and robust manner. For example, one of the key challenges
in developing motion planning pipelines for manipulation in
domestic environments is to minimize the amount of time
for which the robot remains idle. Imagine a scenario where
a human is putting newly bought groceries on a table and
the robot is helping her/him by placing them onto a shelf.
In this case, the robot needs to keep up with the human for
a harmonious human robot collaboration. In this work, we
present a formulation to plan pick and place trajectories in
one step and compare it with the classical two-step approach.
We show how planning in one step can improve the execution
time. We also present experimental results from a practical

Fig. 1. Experiment setup: (Left) Environment model (Right) Real world

pick and place task.

II. METHODOLOGY

Our development platform used in this study, is the Toyota’s
Human Support Robot (HSR). The HSR is a mobile service
robot equipped with a 5 degrees-of-freedom (DoF) arm and
a 3 DoF omni-drive base. The HSR’s head has 2 DoF, one
pair of stereo camera, a wide angle RGB camera and a depth
sensor. The base of the HSR is modeled as two prismatic and
one revolute joint and combined with the arm to get the 8-DoF
whole body chain.

A. Motion Planning

The motion planning problem can be formulated as a
non-convex optimization problem and can be solved using
sequential quadratic programming (SQP) by minimizing a
cost function subject to inequality and equality constraints.
A simple cost function is used to penalize long-length paths:

f(q1 : T ) =

T∑
1

||qt+1 − qt||2 (1)

where qt ∈ R8, the decision variable of the problem,
describes the joint configuration at t-th time step for the 8
DoF kinematic chain. The joint limits are defined as inequality
constraints: (qt−q−) > 0, and (q+−qt) > 0, where q+ and q−

are maximum and minimum values, respectively. End-effector
poses are defined as equality constrains: ∆d(qt) = 0 where
∆d(qt), ordered as [∆x,∆y,∆z,∆roll,∆pitch,∆yaw], is
the Cartesian deviation between the end-effector pose at the
robot state qt and its desired pose. Finally, Gilbert-Johnson-
Keerthi algorithm is used to compute collision distance and



hinge-loss function is used to set up the constraint as intro-
duced in [4]. Once a trajectory is planned, it is smoothed using
tension spline interpolation based on velocity and acceleration
limits.

B. Perception

In order to plan collision-free trajectories, a complete model
of the environment needs to be generated. We used RANSAC
algorithm to segment planes in the point cloud e.g., shelf
racks, table. The tabletop is then clustered using Euclidean
Clustering algorithm to segment individual objects. Finally,
Principal Component Analysis is applied to tabletop object to
get their poses. The OpenRAVE simulation platform is used
to model the environment of the robot.

III. EXPERIMENTS

A. Experimental Setup

The overall experiment is picking an object from a table
and placing it onto a shelf within the robot’s workspace. The
experimental setup is shown in Figure 1. The pick position
is selected 3cm away from the object’s center towards the
robot and the orientation is aligned with the object’s principal
axes. The place pose is selected as the middle of the top shelf
rack. For a fair comparison, the environment is modeled in the
beginning and used for all tests. Two cases are tested:

1) 1. Two-step Planning: A classical two-step approach in
which two separate trajectories are planned for each of picking
and placing poses. The robot executes the first plan, grasp
the object, executes the second plan and places the object.
For each planning 5 waypoints are used and the end-effector
goals are given as pose constraint at the last waypoint to the
optimization.

2) 2. One-step Planning: The whole task is planned in one
step where 10 waypoints are used and the pick and place pose
are given as pose constraints at the 5th and 10th waypoints,
respectively. Since the robot will be moving at the picking
waypoint, an external controller is used to check whether
the end-effector is reached to picking pose by looking at the
difference of current end-effect pose and goal pose. If the error
is less than 10−4, the fingers are closed immediately. Each case
is executed 15 times.

B. Results

The two cases are compared in terms of planning time, total
path length and the execution time. No notable improvements
have been observed for the planning time (around 1 second
for both cases) and the path length, however, a significant
improvement has been recorded for the execution time. For
one-step planning, the mean of the execution time over 15
pick-and-place tasks is found to be 20.15 seconds whereas
for the two-step planning, it is 26.96 seconds. The standard
deviation and mean of execution times are depicted in Figure
2. Since we are using the sum of joint displacements for each
consecutive waypoints as the cost function (1), the following
joint configurations after picking configuration are close to
picking configuration, when it is planning for one-step. Thus,

it is shorter for the robot to reach from picking configuration
to placing configuration. Also, one-step planning produces a
complete trajectory which results in a better velocity profiling
during trajectory smoothing.

Fig. 2. Mean and standard deviation of execution times

IV. CONCLUSION

This report describes how a pick and place task can be
planned in one step and produce shorter execution times
compared to the two-step planning. We show our experimental
setup with a mobile manipulator that performs the task in
the real world. Although this work focuses on sequential
manipulation, since we can define arbitrary links to reach
certain poses at any time along the trajectory, this method
can easily be extended to augment different task constraints
into motion planning problem. Therefore, the same framework
can be applied to more general task and motion planning
problems. One drawback of one-step planning is that it is
prone to unstable grasping, we are planning to address this
problem as a future work and generalize this method for more
objects.
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