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Abstract— We propose a new algorithm for Multi Agent Task
and Motion Planning (TAMP). Our approach builds on the
Logic-Geometric Programming framework (LGP) presented in
prior work [1, 2]. The presented algorithm plans policies that
react to the actions of the other agents, both on the symbolic and
the motion level. To this end, we optimize trajectory trees that
describe the branchings of optimal motions depending on the
other agent actions. The algorithm works in two stages: First,
the symbolic policy is optimized using approximate path costs
estimated from independent optimization of trajectory pieces.
Second, we fix the best symbolic policy and optimize a joint
trajectory tree.

I. INTRODUCTION

Our research interests lie in Task and Motion planning in
the presence of uncertainty. Our past research focused on the
uncertainty induced by partial observability [3]. This abstract
presents an extension to the case of uncertainty induced by
the behavior of other agents.

II. PROBLEM FORMULATION

A. Decision tree

To define a problem we first define a multi-agent deci-
sion process. Second, for each action, we define cost and
constraint functions that define the continuous trajectory
problems associated with actions. The problem can then be
defined in terms of a decision tree alternating two kinds of
nodes: ego-nodes (representing a decision of the controlled
agent), and nodes representing the possible decisions of the
other agents. In the case of two agents acting adversarially,
this boils down to a min-max-tree. An optimal policy is then
comprised of a reactive symbolic policy π∗ that transitions
the tree depending on the other agents actions, and an optimal
trajectory tree ψ∗ which, smoothly switches into different
motion options.

1) Example of decision tree: We consider a car behind
a truck with a car coming in front, see Fig. 1. The ego-car
wishes to overtake. At the first time step, the agent can either
initiate the overtaking (change lane), or stay in line. After
starting to overtake, the ego-car can accelerate to overtake, or
move back behind the truck. In the meantime, the behavior
of the car coming in front is uncertain, and either slows-
down, accelerates, or continues at its current speed. Fig. 2 is
the decision tree.

Fig. 1: The ego vehicle (cyan) wants to overtake although the behavior of the red car
coming in front is uncertain.

Fig. 2: Decision tree for overtaking. The cyan nodes represent decisions of the ego-car,
red nodes are for the car in front. Thick edges represent a possible policy

B. Trajectory Tree

Let x be a trajectory, taking action a over [tk, tk+1] implies
costs

c(a,x) =
∫ tk+1

tk
fa(x(t), ẋ(t), ¨x(t))dt (1)

s.t ga(x(t), ẋ(t), ¨x(t))<= 0 (2)

ha(x(t), ẋ(t), ¨x(t)) = 0 . (3)

if feasible, and +∞ if the constraints cannot be satisfied.
In typical trajectory optimization, the optimization objec-

tive is a sum of cost terms along the whole trajectory. In our
setting, we generalize this to a sum of cost terms for each
ego-action edge in the tree, weighted by the probability of
reaching this edge. The probability of reaching an edge is
given by the decision model of the other agents.

C. Model of the other agents

Planning is performed by hypothesizing the decisions of
the other agents and optimizing their eventual trajectories.
Examples of models are:
• Adversarial: Other agents take decisions that maximize

the trajectory costs of the ego-agent.
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Fig. 3: TAMP algorithm

• Cooperative: Other agents minimize the trajectory costs
of the ego-agent.

• Unpredictable: Other agents may take any action.

A policy π and a model of the other agents define the
probability of reaching an edge a in the decision tree. We
note this probability p(a|π).

D. Optimal Policy and Trajectory Tree

We can now define the problem as finding a symbolic
policy π and a trajectory tree ψ that minimize the discounted
expected cost,

Π
∗ = argmin

(π,ψ)
∑
a∈π

p(a|π) γ
k(a) c(a,ψ(a)) . (4)

III. SOLVER

We propose a solver that works in three stages, schema-
tized on Fig. 3. First, the decision tree is build. Second, we
alternate Value Iteration and piece-wise trajectory optimiza-
tion to compute the symbolic policy π∗ jointly with a set of
trajectory pieces. These pieces do not yet form a globally
optimal trajectory tree, but inform the task planning about
the cost associated with actions. In the third stage we fix π∗

and optimize the full trajectory tree jointly.

A. Decision tree Building

The decision tree, is expanded from the start state us-
ing a breadth first strategy. We limit the tree size by ex-
panding only to a certain maximal depth. In our current
implementation, the problem is specified in a custom-made
format. However, the environments and problems used so
far can be described using a multi-agent extensions of the
PPDL format. A recent extension with an open-source parser
can be found here : https://github.com/aig-upf/
universal-pddl-parser-multiagent.

B. Task Planning

We assume that at any point in time we have cost estimates
c(a) for each action a in the decision tree. These costs are
initially all initialized with heuristic values. At each iteration,
the optimal policy π∗, is computed from the tree using Value
Iteration. The definition of the Bellman operator is specific
for each agent-model and will be further described in future
work. Then, more precise cost estimates of the actions of
π∗ are computed using piece-wise trajectory optimization,
as described below.

Fig. 4: Examples of policies. The policies a), b) and c) are obtained hypothesizing
respectively an adversarial, cooperative and unpredictable other agent.

C. Piece-wise Trajectory Optimization

For each action of π∗ we compute an estimate of trajec-
tory cost c(a) (if it was not already computed in previous
iterations). For the sake of computational efficiency, we first
perform a feasibility check by optimizing key-frames only
(robot pose at each node). If feasible, we optimize the tra-
jectory piece x, minimizing (1). The trajectory optimization
methods are adopted from [1][2]. We save the resulting cost
c(a) and the trajectory piece x.

D. Joint Optimization of the Trajectory Tree

In the third stage of the solver, we fix the symbolic
policy π∗ found as described so far, and focus on the
joint optimization of the trajectory tree ψ . So far we have
only computed pieces x for each action edge. Concatenating
these independently optimized pieces cannot capture long-
term dependencies in the trajectories, e.g. when final actions
influence earlier parts of the trajectory. The joint optimization
of the trajectory tree leads to better and smoother motions.
It is computationally costly, but performed only once for the
best symbolic policy π∗.

We again solve the problem stage-wise. We first optimize
all linear trajectories from the root node to each reached
terminal nodes independently. Secondly, the trajectories are
re-optimized with additional equality constraints enforcing
that the common parts between trajectories are identical.

IV. EXPERIMENTAL RESULTS

A. Overtaking behavior

We consider the overtaking problem introduced previously.
Planning is performed using three different agents-models:
cooperative, adversarial, and unpredictable, see Fig. 4. In the
first two cases a) and b), the behavior of the other agent is
purely deterministic leading to sequential policies. In c), the
policy is tree-like since the other agent may take any action.
The ego car starts overtaking but moves back if the car in
front accelerates, otherwise, the maneuver is pursued. For
viewing the optimized trajectories, we refer the reader to the
following video: https://youtu.be/y-iLmFbwaFs.
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