
RSS Workshop on Grounding Human-Robot Dialog for Spatial Tasks, July 2011

Make Your Robot Talk Correctly: Deriving Models of Hybrid System

Neil Dantam
ntd@gatech.edu

Magnus Egerstedt
magnus@ece.gatech.edu

Mike Stilman
mstilman@cc.gatech.edu

Abstract—Using both formal language and differential
equations to model a robotic system, we introduce a calcu-
lus of transformation rules for the symbolic derivation of
hybrid controllers. With a Context-Free Motion Grammar,
we show how to test reachability between different regions
of state-space and give several symbolic transformations to
modify the set of event strings the system may generate.
This approach lets one modify the language of the hybrid
system, providing a way to change system behavior so that
it satisfies linguistic constraints on correct operation.

I. INTRODUCTION

To make robots safe and reliable, we advocate the use
of formal verification to prove that the robotic system
will operate correctly. Because robots are hybrid systems
with both discrete event-driven and continuous time-
driven dynamics, we must use methods that operate on
the combined hybrid dynamics. By accounting for the
combined dynamics, we can create and verify controllers
to achieve desired goals.

We present a systematic approach for the construc-
tion and verification of hybrid controllers based on the
Motion Grammar. The Motion Grammar describes the
interaction between a robot and its environment as a
formal language [1]. Unlike natural language, which can
be ambiguous, formal language is precisely specified.
Describing this dialog of sensor readings and input
commands as a formal language permits model checking
to verify correctness and prevent damage or injury [2].
In this paper, we introduce a method to transform the
grammar to achieve previously unsatisfied correctness
constraints. This transformation uses a calculus of sym-
bolic rules that leverage both the discrete and continuous
dynamics of the system. By introducing new events at
convenient points or showing that regions in state space
are unreachable, we can modify the grammar in a way
that changes the set of events which may be generated.
The Motion Grammar Calculus is a formal method for
deriving hybrid controllers using a set of symbolic trans-
formations that modify the system language to achieve
correct operation.

Our work in this paper is based on the Motion Gram-
mar, an approach to hybrid control using Context-Free
Grammars [1, 2]. Hybrid control combines automata
theory [3] and state-space control [4]. There are many
other methods for hybrid control including the Motion

Description Language (MDL) [5], Hybrid Automata
[8], Maneuver Automaton [9], and MDLe [10]. Several
authors apply Linear Temporal Logic (LTL) to specify
and derive controllers for hybrid systems [11, 12, 13].
Our work differs from this primarily in that we introduce
methods for expanding the set of discrete events in the
system. More detailed background and comparisons with
other methods are given in [2, 14].

II. SUMMARY OF THE MOTION GRAMMAR

The Motion Grammar is a Syntax-Directed Definition
expressing the language of interaction between agents
and real-world uncertain environments. The syntax of
the grammar describes the structure of system events,
the discrete dynamics. The semantics of the grammar
describes the time-driven response of the system, the
continuous dynamics, using state-space differential equa-
tions.

Definition 1. The Motion Grammar, GM , is a tuple
GM = (Z, V, P, S,U ,X ,Z , η,K)
Z set of tokens representing events
V set of nonterminals
P set of productions
S starting nonterminal, S ∈ V
U space of robot inputs
X continuous robot state space
Z space of robot sensor readings
η tokenizing function, η : Z 7→ Z
K set of semantic rules

III. TOKENIZATION AND REACHABILITY

Tokens are discrete events. One important type of
event is entry into some region of interest within the
continuous state space. These regions may be areas
where the underlying dynamics of the system change, for
example a position where contact is made with another
object. They may also be areas where we want our input
to the system to abruptly change, for example a mobile
robot reaching a waypoint and switching to a different
trajectory. A new token or event then is generated when
the robot enters into that region.

Definition 2. The token set Z is a set of regions
representing a complete partition of the state space X .
For bx ∈ Ric ∈ Z ,
• Ri ∩Rj = ∅, i 6= j, regions are nonoverlapping.

1

•
⋃|Z |
i=1Ri = X , regions cover the entire state space.

Definition 3. A new token is generated when the system
crosses the boundary between two regions. In discrete
time, when xk−1 ∈ Ri∧xk ∈ Rj∧i 6= j, token bx ∈ Rjc
appended to the input tape.

This definition of tokens requires that we compute at
runtime what side of the region boundary the system is
in. One way to do this is to express this codimension-1
manifold M as the set of all points where some scalar
function is zero,

M = {x : s(x) = 0} (1)

Then sign (s(x)) will indicate the side of the manifold
that the system is in.

A. Region Crossing

Using the definition of tokens as regions, we can
now use the continuous dynamics to predict the discrete
dynamics. In Sect. IV, we will use this fact to transform
the grammar. Note that since tokens are regions, the set
of discrete tokens which may be generated is equivalent
to the set of reachable regions of continuous state.
Consider the autonomous system dynamics given by
smooth function ẋ = f(x). Let the boundary between
Ri and Rj be given by the codimension-1 manifoldM,
c = s(x). The normal vector to M at point x is ∇s(x).

To determine if the system will crossM at some point
x, we consider the direction of ẋ = f(x) compared
to ∇s(x). If ∇s(x) · f(x) < 0, then the vectors point
away from each other the system moves away from the
boundary and will not cross it. This product is the Lie
Derivative, Lfs = ∇s(x)f(x).

Theorem 1. Let M = {x : s(x) = 0}. If Lfs(x) <
0 ∀x ∈ M, the system will never cross M. If ∃x ∈
M, Lfs(x) > 0, the system may cross M.

Proof: Consider some p ∈ M. Then Lfs(p) =
∇s(p) · f(p) = ‖∇s(p)‖ ‖f(p)‖ cos θ, where θ is the
angle between ∇s(p) and f(p). When cos θ > 0, the
system moves offM in the direction of increasing s(x).
When cos θ < 0, the system moves off M in the direc-
tion of decreasing s(x). Since sign (cos θ) = sign (Lfs)
we can use sign (Lfs) to test which side of M the
system will move to from p. If there is no p for which
Lfs > 0, then the system cannot move off the manifold
to cross it. If there is any p for which Lfs > 0, then
from that p, the system will move off the manifold thus
cross it.

Thm. 1 thus shows whether one region is directly
reachable from another based on system dynamics ẋ =

R1

p

n

ẋ

ẋ · n < 0

Fig. 1. A region given by 1 = x2

22
+ y2 and tangent planes by

1 + x0
2

22
+ y02 = 2x0

22
x+ 2y0y. The system is evolves by ẋ = −x,

indicating that it stays within R1 at the boundary.

f(x). One way to express Lfs only along M is to
parametrize M by some v ∈ <n−1, where X ∈ <n.

M = {x : x = φ(v)} (2)

For example, ifM is a hyperplane, then φ(v) =Mv,
where M is a n×(n−1) matrix. IfM is a hypersphere,
the φ can be defined to transform spherical coordinate
vector v to Cartesian coordinates x.

B. Example

Consider a region bounded by an ellipse centered on
the origin as shown in Fig. 1.

M ≡ c = x1
2

a12
+
x2

2

a22
(3)

∇s(x) =
[x1

a12
x2

a22

]
(4)

1) System 1: Consider time-driven dynamics ẋ = −x.
This gives us Lfs = −x1

2

a12 − x2
2

a22 . Since this is always
negative, the system will not cross the boundary.

2) System 2: Consider time-driven dynamics ẋ =[
y − x −x− y

]T
. This gives us Lfs = x1x2

a12 −
x1x2

a22 − x1
2

a12 − x2
2

a22 . We can use a parameterization of
the manifold by v, x =

[
a1 cos v a2 sin v

]
to rewrite

Lfs = a2
a1
cvsv − a1

a2
cvsv − 1. From this, we see that if

a1
a2
> 1+

√
2 or a2

a1
> 1+

√
2, the Lie Derivative will be

positive for some values of v meaning that the system
will cross the boundary from some, but not all v.

C. Uncontrollable Events

In addition to the controllable events resulting from
the continuous dynamics, we can model uncontrollable
events as well. Such events may include fault conditions,
uncontrollable continuous dynamics, and even human
actions or utterances. All can be included as tokens in
the grammar. In this paper however, we focus on the
controllable events because it is by appropriately con-
trolling these events that we can transform the grammar
to achieve correctness.

2

IV. THE MOTION GRAMMAR CALCULUS

We introduce a calculus of symbolic transformation
rules that may be used to construct a hybrid controller for
some system. Initially, the system designer must model
the hybrid system as a grammar or equivalent automaton.
This initial grammar G0 represents the behavior of the
system for any specified input u. Then, these trans-
formations may be applied to rewrite G0 into another
grammar G that satisfies the desired constraints. These
transformations are thus changing the system language,
L(G0) 6= L(G). Through this process, we modify the
behavior of the system to make it correct.

There are two types of transformations that we con-
sider here. One type operates purely on the discrete
grammar, converting it into a more convenient form.
The other type of transformation uses continuous domain
knowledge to modify the language.

A. Discrete Rules

We can apply any transformation to the grammar
which does not modify the system language but instead
rewrites the grammar in a more convenient form. Trans-
formations like this are used, for example, to convert
grammars to normal forms such as Chomsky Normal
Form or Greibach Normal Form [3]. This process of
rewriting grammars without changing the language is
useful in many domains. We apply it here to dynamical
systems in order to rewrite the grammar in a form
amenable to our rules which exploit the continuous
domain semantics.

B. Continuous Rules

These rules use knowledge of the continuous dynam-
ics to modify the language of the grammar based on
what regions the system may enter, corresponding to
what tokens it may generate. For these rules, we specify
some precondition on the production set P , and then
specify the resulting token set Z ′, nonterminal set V ′

and production set P ′.
1) Input Specification: When the continuous dynam-

ics are of the form ẋ = f0(x, u), we are always able to
specify an input u.

Transform 1. Given p = A → αf0(x, u)β, define
f(x) = f0(x, g(x)). Then the new production set is
P ′ = P − p ∪ {A→ αf(x)β}.

2) Token Splitting: Some region represented by a
token can be split into two regions, creating two new
tokens. We then create new productions to indicate entry
into these new regions.

Transform 2. Given some ζ0 = bx ∈ R0c ∈ Z, create
tokens ζ1 = bx ∈ R1c and ζ2 = bx ∈ R2c such that

R1 ∪ R2 = R0 ∧ R1 ∩ R2 = ∅ and update token
set Z ′ = Z − ζ0 ∪ {ζ1, ζ2}. The new nonterminal
set is V ′ = V ∪ {A0, A1, A2, A3, A4}. The new
production set is P ′ = P − {(A→ α1ζ0κα2) ∈ P} ∪
{(A→ α1A0) , (A0 → A1|A2) : (A→ α1ζ0κα2) ∈ P}∪
{(A1 → ζ1κA3) , (A2 → ζ2κA4) : (A→ α1ζ0κα2) ∈ P}∪
{(A3 → A2|α2) , (A4 → A1|α2) : (A→ α1ζ0κα2) ∈ P}.

3) Adjacency: If two regions in state space are not
adjacent, then the system may not pass directly between
them. Thus we can eliminate productions which allow
this to happen.

Transform 3. For p1 = A→ rAκAB, B → β1| . . . |βn,
if rA is not adjacent to R0(βn) WLOG, then P ′ = P −
p1 ∪ {A→ rAκAB

′} ∪ {B′ → β1| . . . |βn−1}

4) Pruning: The continuous dynamics f provide in-
formation that may be used to remove productions from
the grammar. From Thm. 1, we can show whether the
system following some function ẋ = f(x) may actually
cross into any of the regions specified in the grammar.

Transform 4. Given productions p1 = A→ r1fB and
p2 = r1fC, if ∀r2 ∈ first(C) Lfs(p) < 0 for all p along
the manifold bordering region r1 and r2, then P ′ =
P − p2.

a) Bounce: If the system in moving from region
r1 to region r2 will immediately reenter r1, then we can
eliminate productions showing that the system will pass
through r2 into some third region.

Transform 5. Given productions p1 = A → r1κAB,
p2 = B → r2κBC, and p3 = C → r1κBα, if
LκA

s12(x) > 0 ∀x ∈ {x : s12(x) = c} ∧ LκB
s21(x) >

0 ∀x ∈ {x : s21(x) = c}, then P ′ = P − p1 − p2 ∪
{(A→ r1κAB

′) , (B′ → r2κBr1κBα)}

C. Using the Calculus to Enforce Correctness

These rules provide important capabilities to work
with hybrid models. Tf. 1 allows us to specify the input
to the robot to drive toward desired tokens. Tf. 2 allows
us to introduce new surfaces where we can switch control
inputs. Tf. 3, Tf. 4, and Tf. 5 allow us to remove
productions from the grammar. We can use this to
satisfy a correctness constraint by eliminating certain bad
productions causing the constraint violation. In this way,
we can systematically produce a grammatical model that
specifies the correct operation.

V. EXAMPLE DERIVATION

We now demonstrate this approach with a simple
example. Consider a mobile robot moving in one dimen-
sion, x1, with a battery, x2, that discharges as it moves.

3

x1

x2 Rs

Rm

Rd

(a) Initial Regions

x1

x2 Rs+
Rs−
Rm+

Rm−

Rd

(b) Derived Regions

Fig. 2. Regions/Tokens for 1-dimensional robot with battery.�

�

�

�

〈S〉 → bsc
{
ẋ = [u ks]

T
}
〈M〉

〈M〉 → bmc
{
ẋ = [u −|u|]T

}
〈N〉

〈N〉 → 〈S〉 | 〈D〉
〈D〉 → bdc {ẋ = 0}

Fig. 3. Initial grammar for 1-dimensional battery robot.
There is a recharging station at the zero position. When
the battery level falls to zero, the robot can no longer
operate. The tokens and continuous state space are shown
in Fig. 2(a). The initial grammar for this system is given
in Fig. 3.

Because we want the robot to keep operating, its
battery should never run down. This constraint can be
expressed as the LTL formula,

� (¬ bdc) (5)
The initial grammar does not satisfy (5). For example,
the grammar generates the string bsc bmc bdc, which
violates the constraint. Thus, we must apply our trans-
formations to the grammar in order to make it correct.

There are two main ideas to maintaining the battery
charge. First, the robot must never stray far enough from
the charging station such that its battery level is too
low for it to return. Second, the robot must wait in
the charging station for some time to recharge. These
two ideas indicate how we should split the state space
to produce new surfaces for switching controllers, Fig.
2(b), using Tf. 2. Tf. 1 lets us specify controllers to
drive the robot appropriately. Finally, we can eliminate
bad productions to derive the grammar in Fig. 4.

In this derived grammar, we have removed all produc-
tions which may generate bdc. Observe that in 〈M′2〉,
the robot will return to the charging station when its
battery is too low. Since we only momentarily contact
Rm− (Tf. 5) and since Rm+ is not adjacent to Rd (Tf.
3), we eliminated the dead battery production. Thus, the
grammar now satisfies (5).

VI. CONCLUSION

In this paper, we have introduced a method for sym-
bolically deriving hybrid controllers using context free

'

&

$

%

〈S〉 → 〈S1〉|〈S2〉

〈S1〉 → bs+c
{
ẋ = [u ks]

T
}
〈M1〉

〈S2〉 → bs−c{ẋ = [−x1 ks]} 〈S1〉

〈M1〉 → bm+c
{
ẋ = [u −|u|]T

}
〈M3〉

〈M3〉 → 〈M′
2〉|〈S〉

〈M′
2〉 → bm−c{ẋ = [−x −|u|]} 〈M′′

2 〉
〈M′′

2 〉 → bm+c {ẋ = [−x −|u|]} 〈S〉

Fig. 4. Derived Grammar for 1-dimensional battery robot.

grammars. Using a variety of transformation rules, one
can modify an initial grammatical model of the system,
changing the system language in the process. We use
knowledge of the continuous system dynamics to show
which regions are reachable. Following this approach,
we can derive a new grammar for the system that will
satisfy constraints on correct operation.

REFERENCES
[1] N. Dantam, P. Kolhe, and M. Stilman, “The motion grammar for

physical human-robot games,” in IEEE Intl. Conf. on Robotics
and Automation. IEEE, 2011.

[2] N. Dantam and M. Stilman, “The motion grammar: Linguistic
planning and control,” in Robotics: Science and Systems (ac-
cepted). IEEE, 2011.

[3] J. Hopcroft and J. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Reading, MA,
1979.

[4] W. Brogan, Modern Control Theory. Prentice-Hall, Upper
Saddle River, NJ, 1991.

[5] R. Brockett, “Formal languages for motion description and map
making,” Robotics, vol. 41, pp. 181–191, 1990.

[6] M. Egerstedt, “Motion description languages for multi-modal
control in robotics,” Control Problems in Robotics, pp. 74–90,
2002.

[7] M. Egerstedt, T. Murphey, and J. Ludwig, “Motion programs for
puppet choreography and control,” in Hybrid Systems: Compu-
tation and Control. Springer, 2007, pp. 190–202.

[8] D. Hristu-Varsakelis and W. Levine, Eds., Handbook of Net-
worked and Embedded Control Systems. Birkhauser, 2005.

[9] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Trans-
actions on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[10] V. Manikonda, P. Krishnaprasad, and J. Hendler, “Languages, be-
haviors, hybrid architectures and motion control,” Mathematical
Control Theory, pp. 199–226, 1998.

[11] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in IEEE Conf. on
Decision and Control, 2005.

[12] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions
on Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[13] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[14] N. Dantam and M. Stilman, “The motion grammar: Linguistic
perception, planning, and control,” College of Computing, Geor-
gia Institute of Technology, Tech. Rep. GT-GOLEM-2010-001,
2010.

[15] C. Belta and L. Habets, “Controlling a class of non-linear systems
on rectangles,” Automatic Control, IEEE Transactions on, vol. 51,
no. 11, pp. 1749–1759, 2006.

4

