
Georgia Institute of Technology, Technical Report, GT-GOLEM-2012-002

Algorithms for Linguistic Robot Policy Inference from
Demonstration of Assembly Tasks

Neil Dantam, Irfan Essa, and Mike Stilman

Abstract We describe several algorithms used for the inference of linguistic robot policies from human
demonstration. First, tracking and match objects using the Hungarian Algorithm. Then, we convert Reg-
ular Expressions to Nondeterministic Finite Automata (NFA) using the McNaughton-Yamada-Thompson
Algorithm. Next, we use Subset Construction to convert to a Deterministic Finite Automaton. Finally, we
minimize finite automata using either Hopcroft’s Algorithm or Brzozowski’s Algorithm.

1 Introduction

The purpose of this technical report is the describe the algorithms used for the inference of robot control
policies from human demonstrations. Hybrid system models are a powerful and effective approach for verify-
ing and controlling robotic systems. However, the development of these models is usually a manual process
requiring both mathematical and domain-specific expertise. Our pipeline for policy inference, Fig. 1, helps
to automate the production of formal, verifiable models for robot control. To perform this inference, we com-
bine and apply different existing algorithms from optimization and language theory. This report provides a
consolidated description of the algorithms used to implement this inference pipeline.

Human Demonstration RGBD Video Segment and Cluster

Recognize ObjectsInfer StructureConnection Events

Assembly Strings Assembly Grammar Robot Execution

Fig. 1 Pipeline for automatic generation of grammars from human demonstration.

2 Object Tracking and Matching as The Assignment Problem

First, we track and match individual objects in the human demonstration video through the Assignment
Problem. The Assignment Problem is an optimization problem that consists of finding the minimum cost
matching between two sets, A and B, where the distances d between members of A and B are known..

Definition 1 (Assignment Problem). Given sets A and B and distance function d : A×B 7→ <, find the
bijection f : A 7→ B such that

∑
a∈A d(a, f(a)) is minimized.

The Hungarian algorithm, shown in 1, is one approach for solving the assignment problem. This algorithm
consists of the following seven steps.

Center for Robotics and Intelligent Machines, Georgia Institute of Technology, ntd@gatech.edu, irfan@cc.gatech.edu, mstil-

man@cc.gatech.edu.

1

Step 1 Subtract the minimum element from each row and column of the distance matrix.
Step 2 Star each zero in the distance matrix
Step 3 If every column contains a star, go to step 7. Otherwise go to step 4.
Step 4 Find an uncovered zero in the distance matrix. If there are no uncovered zeros, go to step 6. For

any uncovered zero, prime the zero. If there is a star in the zero’s row, uncover the star’s column and look
for the next uncovered zero. If there are no stars in the zero’s row, go to step 5.

Step 5 Construct a through the distance matrix consisting of alternating stars and primes. First, find a
starred column and add it to the path. If there are no more starred columns, the path is complete. Then
find a primed row and add it to the path. If there are no more primed rows, the path is complete. When
path is complete, unstar every starred element on the path, and star every unstarred element on the path.
Go to step 3.

Step 6 Find the smallest uncovered value. Add this value to every covered row and subtract it from every
uncovered column. Go to step 4.

Step 7 Each star now represents an optimum assignment.

The Hungarian algorithm is based on some assumptions about the structure of the assignment problem.
First, we assume equal size sets A and B. If one of these sets is actually, smaller, we can pad the distance
matrix with zeros to make the sets of equal size without affecting the optimum assignments. In addition, this
algorithm computes the minimum cost assignment. To instead solve the maximum reward variation of the
assignment problem, we can convert this to a minimum cost optimization by modifying the distance function
as follows.

d′(a, b) = max
a′∈A,b′∈B

d(a′, b′)− d(a, b) (1)

3 Regular Expressions to NFA

Later, we convert a Regular Expression to a Nondeterministic Finite Automaton (NFA) using the McNaughton-
Yamada-Thompson Algorithm (MYT) [1, p159]. Regular Expressions and NFA are equivalent representations
that both describe Regular languages.

The MYT algorithm, 2, performs a single top-down traversal of the parse tree for the Regular Expression.
At each node of the parse tree, it adds the appropriate states and transitions. The algorithm in 2 is defined
recursively. Thus, for the base case at the root of the parse tree, one initially starts with an empty NFA.

4 NFA to DFA

Next, we convert the NFA to an equivalent Deterministic Finite Automata (DFA). This conversion increases
efficiency of the automaton in two ways. First, it is generally more efficient to execute a DFA on a computer
than the to execute the NFA. This is because executing the DFA requires only tracking a single state at
each point in time, while the nondeterminism of the NFA requires tracking multiple states. Second, we
are able to compute minimum state equivalent DFAs, discussed in Sect. 5. This reduces both the cost of
future operations on the automata and the storage requirements for the DFA’s parsing table. We define this
conversion algorithm based on [1, p152].

The NFA to DFA conversion uses two uses two subprocedures. The procedure ε-closure computes the set
of all states reachable from some initial state via only ε transitions. The provided definition starts with some
initial set of states S and some initial closure C. Then, for each ε transition from s ∈ S to a state s′ 6∈ C, it
adds s′ to C and recurses on s′. The procedure move-ε-closure computes the ε-closure of all states reachable
from some initial set of states after a single non-ε transition.

The algorithm in 5 converts the NFA to a DFA. It operates by simulating the NFA and iteratively
constructing subsets of the NFA states. For each possible transition, a new q′, subset is constructed from the
move-ε-closures of q′. The algorithm terminates when we have computed move-ε-closure for every created
subset.

2

5 DFA Minimization

To reduce the computational requirements for policy execution, we minimize the state of the DFA using Brzo-
zowski’s Algorithm [2] or Hopcroft’s Algorithm [4]. While Hopcroft’s Algorithm provides superior worst case
performance of O(n log(n)) in number of states n compared to possibly exponential time for Brzozowski’s,
typical cases often fare better with Brzozowski [3].

Brzozowski’s Algorithm, 6, operates by reversing all connections in the FA and converting the resulting
NFA to a DFA, then repeating that procedure once more. The result is a DFA with minimum state.

Hopcroft’s Algorithm, 7, operates by repeatedly partitioning the states of a DFA. Initially, it creates an
initial partition Q′ of states which are accepting and states which are rejecting. Then, it progressively refines
Q′ into subgroups which whose transitions for every symbol go only to states in the same subgroup of Q′.
Finally, when no further refinements can be made, the algorithm terminates.

6 Summary

In this report, we described several algorithms used in the translation of human demonstrations to robot
policies. The Hungarian algorithm for the Assignment Problem helps track and match objects in the demon-
stration. The McNaughton-Yamada-Thompson converts a Regular Expression for the policy to equivalent
policy NFA. We use subset construction to convert the NFA to equivalent DFA. Finally, we minimize the
state of the policy DFA using either Brzozowski’s or Hopcroft’s algorithm.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, & Tools. Pearson, 2nd edition, 2007.

[2] J.A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. Mathematical theory of

Automata, 12:529–561, 1962.
[3] J.M. Champarnaud, A. Khorsi, and T. Paranthoën. Split and join for minimizing: Brzozowskis algorithm. Proc. of PSC, 2:

96–104, 2002.
[4] J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. Reproduction, pages 189–196, 1971.

3

Algorithm 1: Hungarian Algorithm

Input: D : matrix <n ×<n ; // Pairwise distances

Output: A : list N× N ; // Assignments

S ← FALSE ; // star mask, n× n boolean matrix1

P ← FALSE ; // prime mask, n× n boolean matrix2

r ← FALSE ; // row cover, n boolean vector3

c← FALSE ; // column cover, n boolean vector4

/* STEP 1: Subtract smallest element from rows and columns */

forall j=1,n do5

col(D, j)← col(D, j)−min(col(D, j))6

forall i=1,n do7

row(D, i)← row(D, i)−min(row(D, i))8

/* STEP 2: Star each zero in D */

for i=1 to n do9

if ∃j | 0 = Di,j ∧ ¬ri ∧ ¬cj then10

ri ← TRUE ; ci ← TRUE ; Si,j ← TRUE ;11

end ← FALSE ;12

STEP3: repeat13

/* STEP 3: Check if all columns starred */

forall j=1,n do14

cj ← any(col(S, j)) ;15

if count(c) = n then16

end ← TRUE ;17

break ;18

/* STEP 4 */

P ← FALSE;19

r ← FALSE;20

STEP4: for i=1 to n do21

if ∃j | 0 = Di,j ∧ ¬ri ∧ ¬cj then22

Pi,j ← TRUE;23

if ∃k | Si,k = TRUE then24

ri ← TRUE ; ck ← FALSE ; // Cover row, uncover col25

cycle STEP4 ;26

else27

/* Nothing starred in row */

H1 ← (i, j) ;28

/* STEP 5 */

b← 1 for k = 1,n do29

if ∃i | Si,Hb,2 = TRUE then30

Hb+1 = (i,Hb,2) ;31

b← b+ 1;32

if ∃j | Pj,Hb,1 = TRUE then33

Hb+1 = (Hb,1, j) ;34

b← b+ 1;35

/* Convert path */

forall k = 1 to b do36

SHk = ¬SHk ;37

cycle STEP3 ;38

/* STEP 6 */

/* Find smallest uncovered value in D */

m← min
∀i|¬ri, ∀j|¬cj

Di,j ;
39

forall i|rj do40

row(D, i)← row(D, i) +m; /* Add to covered rows */41

forall j|¬cj do42

col(D, j)← col(D, j)−m; /* Subtract from uncovered columns */43

until end ;44

/* STEP 7: Compute Assignments */

A← {(i, j)|Si,j = TRUE};45
4

Algorithm 2: Recursive McNaughton-Yamada-Thompson Algorithm

Input: T, Q, E, s ; // regex tree, NFA states, edges, start state

Output: Q’, E’, a ; // NFA states, edges, end state

if root(T) = CONCATENATION then1

(Q′, E′, a)← fold-left(MYT, (Q,E, s), children(T)) ;2

else if root(T) = UNION then3

L←map(λ(T ∗){MY T (T ∗, Q,E, s)}, children(T));4

(Q′, E′, a)← fold-left(λ(Q∗, E∗, a∗){Q∗, E∗ ∪ (s
ε−→ a∗), a∗}, L);5

else if root(T) = KLEENE-CLOSURE then6

s2 ← newstate() ;7

(Q∗, E∗, a)← MYT(children(T), Q, E, s2) ;8

E′ ← E∗ ∪ (s
ε−→ s2) ∪ (s

ε−→ a) ∪ (a
ε−→ s2) ;9

Q′ ← Q∗ ∪ s2 ;10

else11

a← newstate();12

E′ ← E ∪ (s
T−→ a) ;13

Q′ ← Q ∪ a ;14

Procedure ε-closure(NFA,S,C)

Input: NFA, S, C ; // NFA, initial states, initial closure

Output: C’ ; // final closure

f ← λ(c, s)
{
if(s ∈ c) c else ε−closure

(
NFA,

⋃
s
ε−→q∈NFA

q, s ∪ c
)}

;1

C′ ← fold-left(f, C, S) ;2

Procedure move-ε-closure(NFA,S,Z)

Input: NFA, S, Z ; // NFA, initial states, token

Output: C’ ; // reachable states

f ← λ(c, s)
{
ε−closure

(
NFA,

⋃
s
z−→q∈NFA

q, c
)}

;1

C′ ← fold-left (f, ∅, ε−closure(NFA, S, ∅));2

Algorithm 5: NFA-to-DFA

Input: Q, Z, E, s, a ; // NFA states, tokens, edges, start, accept

Output: Q’, Z’, E’, s’, a’ ; // DFA states, tokens, edges, start, accept

Z′ ← Z ;1

s′ ← ε− closure(s) ;2

Q′ ← s′ ;3

E′ ← ∅ ;4

i← 0 ;5

/* Construct Subsets */

while i < |Q′| do6

forall z ∈ Z do7

u = move−ε−closure((Q,E), Q′i, z) ;8

if u then9

Q′ ← Q′ ∪ u ;10

E′ ← E′ ∪ (Q′i
z−→ u) ;11

i← i+ 1;12

/* Accept States */

a′ = {q ∈ Q′|a ∈ q}13

5

Algorithm 6: Brzozowski’s Algorithm

Input: Q, E, s, a ; // FA states, edges, start, accept

Output: Q’, E’, s’, a’ ; // Minimum DFA states, edges, start, accept

nfa-to-dfa(reverse-fa(nfa-to-dfa(reverse-fa(Q,E,s,a))));1

Algorithm 7: Hopcroft’s Algorithm

Input: Q, Z, E, s, a ; // FA states, tokens, edges, start, accept

Output: Q’, Z’, E’, s’, a’ ; // Minimum DFA states, tokens, edges, start, accept

Z′ ← Z;1

Q′ ← {a,Q− a} ; // Initial Partitioning2

T ← a ;3

while T do4

q′ ← pop(T) ;5

forall z ∈ Z do6

x←
⋃

p
z−→q∈E, ∀q∈q′

p ; // All z predecessor states of partition q’

7

if x then8

Q∗ = ∅;9

forall y ∈ Q′ do10

i = y ∩ x ; // Subset of partition y transitioning on z to q′11

j = y − x; // Subset of partition y transitioning on z to q′12

if i ∧ j then13

Q∗ ← Q∗ ∪ i ∪ j; // Replace partition y with i and j14

if y ∈ T then15

T ← (T − y) ∪ j ∪ j;16

else if |i| < |j| then17

T ← T ∪ i;18

else19

T ← T ∪ j;20

else21

Q∗ ← Q∗ ∪ y; // Don’t split y22

Q′ ← Q∗ ;23

6

	Algorithms for Linguistic Robot Policy Inference from Demonstration of Assembly Tasks
	Neil Dantam, Irfan Essa, and Mike Stilman
	Introduction
	Object Tracking and Matching as The Assignment Problem
	Regular Expressions to NFA
	NFA to DFA
	DFA Minimization
	Summary
	References

