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Abstract—We present a new Interprocess Communication
(IPC) mechanism and library. Ach is uniquely suited for
coordinating drivers, controllers, and algorithms in complex
robotic systems such as humanoid robots. Ach eliminates the
Head-of-Line Blocking problem for applications that always
require access to the newest message. Ach is efficient, robust,
and formally verified. It has been tested and demonstrated
on a variety of physical robotic systems, and we discuss the
implementation on our humanoid robot Golem Krang. Finally,
the source code for Ach is available under an Open Source
permissive license.

I. INTRODUCTION

Correct real-time software is critical to the safe and reliable
operation of complex robotic systems such as humanoid
robots. These systems depend on software for dynamic
balance, object manipulation, navigation, and even seemly
innocuous tasks such as safe regulation of battery voltage.
A multi-process software design increases robustness by
isolating errors to a single process, allowing the rest of the
system to continue operating and reducing the incidence of
catastrophic failure. This approach additionally assists with
modularity and concurrency. However, traditional methods
of Interprocess Communication (IPC) are not well suited
to robotics applications. In particular, standard POSIX IPC
mechanisms such as pipes favor older data over newer and
can block on or drop newer messages. In a real-time control
loop, we always prefer to have the most recent data sample.
In addition, it is critical to minimize message latency for
real-time tasks such as dynamic balance and force control of
manipulators. To address these concerns and produce robust
control software for our humanoid robot Golem Krang, Fig.
1(a), we introduce the Ach1 Interprocess Communication
(IPC) library which enables efficient multi-process real-time
control, is more suited to robotics applications than typical
POSIX IPC, and is formally verified to ensure correctness.

There are three goals and assumptions that guide the
design of our control software and the Ach library. First,
to utilize decades of prior development and engineering,
we choose to implement our real-time system on top of a
POSIX-like Operating System (OS) [1]. This provides us
with high-quality open source platforms such as GNU/Linux
and a wide variety of compatible hardware and software.
Second, because safety is a critical issue for humanoid

The authors are with the Robotics and Intelligent Machines Cen-
ter in the Department of Interactive Computing, Georgia Institute
of Technology, Atlanta, GA 30332, USA. ntd@gatech.edu,
mstilman@cc.gatech.edu

1Ach is available at http://www.golems.org/node/1526. The name “Ach”
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Fig. 1. Robotic Systems where Ach provided all communications between
hardware drivers, perception, planning, and control algorithms. [2], [3], [4].

robots, we must make our system robust. Therefore, we
adopt a multiple process approach as more robust than a
single-process or multi-threaded application. This implies
sampled data must be passed between OS processes using
some form of Interprocess Communication (IPC). Finally,
we favor Open Source Software since it maximizes flexibil-
ity and control in development. This is important both in
research and for development of novel devices where some
requirements may be unknown from the start. These initial
considerations motivate our development of an open source
IPC to efficiently pass sampled data.

POSIX provides a rich variety of IPC mechanisms, but
none of them fully meet our requirements. An overview of
these mechanisms is given in [5]. The fundamental difference
is that as soon as a new sample of the signal is produced,
nearly everything no longer cares about older samples. Thus,
we want to always favor new data over old data whereas
nearly all POSIX IPC favors the old data. This problem
is typically referred to as Head of Line (HOL) Blocking.
The exception to this is POSIX shared memory. However,
synchronization of shared memory is a difficult programming
problem, making the typical and direct use of POSIX shared
memory unfavorable for developing robust systems. Further-
more, some parts of the system, such as logging, may need
to access older samples, so this also should be permitted at
least on a best-effort basis. Since no existing standardized
and open source implementation satisfied our requirements
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for low-latency exchange of most-recent samples, we have
developed a new open source IPC library.

The contribution of this paper is a POSIX Interprocess
Communication library for the real-time control of physical
processes such as robots. This library, called Ach, provides a
message-bus or publish-subscribe communication semantics
– similar to other real-time middleware and robotics pro-
gramming systems [6], [7], [8], [9] – but with the distinguish-
ing feature of favoring newer data over old. Ach provides
certain advantages making it suitable for real-time control
of physical robotic systems. In particular, Ach is formally
verified, it is efficient, and it always provides processes with
the most recent data sample. To our knowledge, these benefits
are unique among existing communications software.

Ach has been used to implement communication for
several robotic systems, shown in Fig. 1 and the video
attachment to this paper [2], [3], [4]. The performance of
these systems verify that the context-switch overhead of a
multi-process real-time application is acceptable for robot
control, including manipulation and dynamic balancing. Our
experience in developing these systems confirms the benefits
in robustness and flexibility from a multi-process application.

II. REVIEW OF POSIX IPC

POSIX provides three main types of general IPC: streams,
datagrams, and shared memory. We review each of these
types and consider why these general-purpose IPC mecha-
nisms are not ideal for real-time robot control. A thorough
survey of POSIX IPC is provided in [5].

A. Streams

Stream IPC includes pipes, fifos, local-domain stream sock-
ets, and TCP sockets. These IPC mechanisms all expose the
file abstraction: a sequence of bytes accessed with read
and write. All stream-based IPC suffers from the HOL
blocking problem; we must read all the old bytes before
we see any new bytes. Furthermore, to prevent blocking
of the reading or writing process, we must resort to more
complicated Nonblocking or Asynchronous IO approaches.

B. Datagrams

1) Datagram Sockets: Datagram sockets perform some-
what better than streams in that they are less likely to block
the sender. However, they give a variation on the HOL
blocking problem where newer messages are simply lost if a
buffer fills up. This is unacceptable since we require access
to the most recent data.

2) POSIX Message Queues: While similar to Datagram
sockets, POSIX Message Queues include the feature of
message priorities. The downside is that it is possible to block
if the queue fills up. Consider a process that gets stuck and
stops processing its message queue. When it starts again, the
process must still read/flush old messages before getting the
most recent sample.

C. Shared Memory

POSIX shared memory is very fast and we could, by simply
overwriting a variable, always have the latest data. However,
this provides no recourse for recovering older data that may
have been missed. In addition, general use of shared memory
presents synchronization issues which are notoriously diffi-
cult to solve. For these reasons, we consider direct use of
shared memory inappropriate.

The data structure which Ach most closely resembles is
the circular array. Circular arrays or ring buffers are common
data stuctures in device drivers and real-time programs,
and the implimentation in Ach provides unique features to
satisfy our requirements for a multi-process real-time system.
Primarily, typical circular buffers allow only one producer
and one consumer with the view that the producer inserts
data and the consumer removes it. The Bip Buffer [10] is
an efficient circular buffer that minimizes copying, but it
is still designed around a single producer and consumer.
The MCRingBuffer [11] is a cache-efficient design, but it
again focuses on the single producer and consumer model.
Our system has multiple producers and multiple consumers
writing and reading a single sequence of messages. A mes-
sage reader cannot remove a message, because some other
process may still need to read it. Because of this different
design requirement, we developed our own data structure and
algorithm for real-time IPC among multiple processes.

D. Further Considerations

1) Nonblocking and Asynchronous IO approaches: There
are several approaches that allow a single process or thread
to perform IO operations across several file descriptions.
Asynchronous IO (AIO) may seem to be the most appropriate
for this application. However, the current implementation
under Linux is not as mature used as other IPC mechanisms.
Methods using select/poll/epoll/kqueue are widely used for
network servers. Yet, both AIO and select-based methods
only mitigate the HOL problem, not eliminate it. Specifically,
the sender will not block, but the receiver must read/flush the
old data from the stream before it can see the most recent
sample.

2) Priorities: To our knowledge, none of the stream
or datagram forms of IPC consider the issue of process
priorities. Priorities are critical for real-time systems. When
there are two readers that want the next sample, we want the
real-time process, such as a motor driver, to get the data and
process it before a non real-time process, such as a logger,
does anything.

E. General, Real-Time and, Robotics Middleware

In addition to the core POSIX IPC mechanisms, there exist
various messaging middlewares and robot software archi-
tectures. However, these are either not Open Source or not
suitable for our multi-process real-time domain.

The Message Passing Interface (MPI) [12] is ubiquitous in
high-performance computing, but its focus is on maximizing
message throughput for networked clusters. Our domain
centers around minimizing sample latency on a single host.
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The Advanced Message Queuing Protocol (AMPQ) [13]
is a network message distribution middleware focused on
business applications; it does not address low-latency real-
time systems. ZeroMQ [14] provides IPC based on TCP and
local-domain sockets which have the HOL blocking condi-
tion. Remote Procedure Call (RPC) methods such as ONC
RPC [15] and CORBA [16] allow synchronous point-to-point
communication but they do not directly allow efficient com-
munication between multiple senders and receivers and also
do not address HOL blocking. In contrast, Data Distribution
Service [6] is a publish-subscribe network protocol which
may be complementary to the efficient and formally verified
IPC we present here.

The Orocos Real-Time Toolkit [17] and NAOqi [18] are
two architectures for robot control, but they do not meet
our requirements for flexible IPC. Aware2.0 [8] is not open
source. Microsoft Robotics Studio is not open source and
does not run on POSIX systems [9]. The RT-Middleware
[19] framework is based on CORBA, which does not provide
a suitably lightweight IPC mechanism. ROS [7] provides
open source TCP and UDP message transports, which suffer
from the aforementioned HOL blocking problem. Rosbridge
[20] is an HTTP and Javascript interface to ROS messaging.
This convenience is appropriate for certain use cases but is
unsuitable for high-speed real-time control. In conclusion,
none of these middlewares met our needs for an open source,
light-weight, and non-HOL blocking IPC.

III. THE ACH IPC LIBRARY

Ach provides a message bus or publish-subscribe style of
communication between multiple writers and multiple read-
ers. A real-time system has multiple Ach channels across
which individual data samples are published. The messages
sent on a channel are simple byte arrays, so arbitrary data
may be transmitted such as text, images, and binary control
messages. Each channel is implemented as two circular
buffers, (1) a data buffer with variable sized entries and
(2) an index buffer with fixed-size elements indicating the
offsets into the data buffer. These two circular buffers are
written in a channel-specific POSIX shared memory file.
Using this formulation, we solve and formally verify the
synchronization problem exactly once and contain it entirely
within the Ach library.

The Ach interface consists of the following procedures:
• ach_create: Create the shared memory region and

initialize its data structures
• ach_open: Open the shared memory file and initialize

process local channel counters
• ach_put: Insert a new message into the channel
• ach_get: Receive a message from the channel
• ach_close: Close the shared memory file

Channels must be created before they can be opened. Cre-
ation may be done directly by either the reading or writing
process, or it may be done via the shell command, ach -C
channel_name, before the reader or writer start. This is
analogous to the creation of FIFOs with mkfifo called
either as a shell command or as a C function. After the
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Fig. 2. Logical Memory Structure for an Ach shared memory file. In this
example, I0 points to a four byte message starting at D1, and I1 points to a
one byte message starting at D5. The next inserted message will use index
cell I2 and start at D6. There are two free index cells and three free data
bytes. Both arrays are circular and wrap around when the end is reached.

channel is created, each reader or writer must open the
channel before it can get or put messages.

A. Channel Data Structure
The core data structure of an Ach channel is a pair of circular
arrays located in the POSIX shared memory file, Fig. 2. The
data array contains variable sized elements which store the
actual message frames sent through the Ach channel. The
index array contains fixed size elements where each element
contains both an offset into the data array and the length of
that element. A head offset into each array indicates both
the place to insert the next data and the location of the most
recent message frame. This pair of circular arrays allows us
to find the variable sized message frames by first looking at
a known offset in the fixed-sized index array.

Access to the channel is synchronized using a mutex and
condition variable. This allows readers to either periodically
poll the channel for new data or to wait on the condition
variable until a writer has posted a new message. Using a
read/write lock instead would have allowed only polling. Ad-
ditionally, synchronization using a mutex prevents starvation
and enables proper priority inheritance between processes,
important to maintaining real-time performance.

B. Core Procedures
Two procedures compose the core of ach: ach_put and
ach_get which we describe in pseudocode.

1) ach put: The procedure ach_put inserts new mes-
sages into the channel. Its function is analogous to write,
sendmsg, and mq_send. The procedure is given a pointer
to the shared memory region for the channel and a byte array
containing the message to post. There are four broad steps
to the procedure:
(1) Get an index entry, lines 2-5. If there is at least one free index

entry, use it. Otherwise, clear the oldest index entry and its
corresponding message in the data array.

(2) Make room in the data array, lines 6-10. If there is enough
room already, continue. Otherwise, repeatedly free the oldest
message until there is enough room.

(3) Copy the message into data array, lines 11-16.
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Procedure ach_put
Input: c : ach channel ; // shared memory file
Input: b : byte array ; // message buffer
Input: n : integer ; // length of message
Output: status : integer ; // status code
if n > length(c.data array) then return OVERFLOW;1
LOCK(c); // take the mutex2
/* Get a index entry */
if 0 = c.index free then3

c.data free+= c.index array[c.index head].size;4
c.index free← 1;5

/* Make room in data array */
i← (c.index head+ c.index free) % c.index cnt;6
while c.data free < n do7

c.data free+= c.index array[i].size;8
c.index free++;9
i← (i+ 1) % c.index cnt;10

/* Copy Buffer */
if c.data size - c.data head ≥ n then11

/* Simple Copy */
MEMCPY(c.data array + c.data head, b, n);12

else13
/* Wraparound Copy */
e← c.data size− c.data head;14
MEMCPY(c.data array + c.data head, b, e);15
MEMCPY(c.data array, b+ e, n− e);16

/* Modify Counts */
c.index array[c.index head].size = n;17
c.index array[c.index head].offset = c.data head;18
c.data head←19
(c.data head+ n) % length(c.data array);
c.data free−= n;20
c.index head← (c.index head+ 1) % c.index cnt;21
c.index free−−;22
UNLOCK(c); // release the mutex23
NOTIFY(c); // wake readers on cond. var.24
return OK;25

(4) Update the offset and free counts in the channel structure, lines
16-22.

2) ach get: The procedure ach_get receives a mes-
sage from the channel. Its function is analogous to read,
recvmsg, and mq_receive. The procedure takes a
pointer to the shared memory region, a storage buffer to copy
the message to, the last message sequence number received,
the next index offset to check for a message, and option
flags indicating whether to block waiting for a new message
and whether to return the newest message bypassing any
older unseen messages. There are four broad steps to the
procedure:

(1) If we are to wait for a new message and there is no new
message, then wait, lines 1-3. Otherwise, if there are no new
messages, return a status code indicating this fact, lines 4-6.

(2) Find the index entry to use, lines 7-12. If we are to return the
newest message, use that entry. Otherwise, if the next entry we
expected to use contains the next sequence number we expect
to see, use that entry. Otherwise, use the oldest entry.

(3) According to the offset and size from the selected index entry,
copy the message from the data array into the provided storage
buffer, lines 13-22.

(4) Update the sequence number count and next index entry offset
for this receiver, lines 23-25.

Procedure ach_get
Input: c : ach channel ; // shared memory file
Input: b : byte array ; // storage for message
Input: n : integer ; // size of b
Input: s : integer ; // last seq. num. seen
Input: i : integer ; // next index to read
Input: ow : boolean ; // wait for new message?
Input: ol : boolean ; // get newest msg.?
Output: integer × integer ; // size, status
Output: s : integer ; // new last seq. num.
Output: i : integer ; // new next index
LOCK(c); // take the mutex1
if c.seq num = s ∧ ow then2

WAIT(c); // condition variable wait3

if c.last seq = s ∨ 0 = c.last seq then4
UNLOCK(c);5
return (0× STALE); // no entries6

/* Find index array offset, j */
if ol then7

/* newest index */
j ← (c.index head+ c.index cnt− 1) % c.index cnt;8

else if ¬ol ∧ c.index array[i].seq num = s+ 1 then9
j ← i; // next index10

else11
/* oldest index */
j ← (c.index head+ c.index free) % c.index cnt;12

/* Now read frame from data array */
x = c.index array[j];13
if x.size > n then14

UNLOCK(c);15
return (x.size×OV ERFLOW );16

if x.offset+ x.size < c.data size then17
MEMCPY(b, c.data array + x.offset, x.size);18

else19
e = c.data size− x.offset;20
MEMCPY(b, c.data array + x.offset, e);21
MEMCPY(b+ e, c.data array, x.size− e);22

s′ ← s;23
s← x.seq num;24
UNLOCK(c);25
i← (i+ 1) % c.index cnt;26
if x.seq num > s′ + 1 then27

return (x.size×MISSED);28
else29

return (x.size×OK);30

IV. CASE STUDY: GOLEM KRANG

Golem Krang [4] is a dynamically balancing bi-manual
mobile manipulator designed and built at the Georgia Tech
Humanoid Robotics Lab. All the real-time control for Krang
is implemented through the Ach IPC library. This approach
has produced software that is both robust and modular,
minimizing system failures and allowing significant code
reuse both within Krang with other projects [2], [3] sharing
the same hardware components.

The electronic components of Golem Krang are summa-
rized in the block diagram of Fig. 3. The real-time control
software runs on the Pentium-M Control PC under Ubuntu
Linux. Krang also contains a secondary Intel i7 PC for
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Fig. 3. Block diagram of electronic components on Golem Krang. Blocks
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Fig. 4. Block diagram of primary software components on Golem Krang.
Gray ovals are user-space driver processes, green ovals are controller
processes, and rectangles are Ach channels.

vision processing which runs outside of the real-time control
system discussed in this paper. The Control PC communi-
cates over eight Controller Area Network buses to embedded
microcontrollers for the wheels, Inertial Measurement Unit
(IMU), torso, and arms. Each wheel is controlled by an AMC
servocontroller. The torso is actuated using three Schunk
PRL motor modules. Each arm is a Schunk LWA3 with a
wrist-mounted ATI force-torque sensor and Robotiq Adaptive
Gripper. The battery management system (BMS) monitors
voltage of the lithium battery cells. To achieve dynamic
balance and manipulation, software on the Control PC must
gather state updates from the arms, wheels, and IMU, then
compute the inputs for arms and wheels, all at the desired
rate of one kilohertz.

The software for Krang is implemented as a collection of
processes communicating over Ach channels, Fig. 4. Each
hardware device, such as the IMU or an LWA3 arm, is
managed by a userspace driver daemon. These drivers are
independent operating system processes that initialize the
hardware, then read state and send commanded control inputs
to hardware device. These state and input messages flow
through a variety of ach channels. State messages include val-
ues such as positions, velocities, and forces. Input messages
include values such as reference velocities or voltages. Each
driver daemon has one channel for the device state messages,
ensuring that the current state of the robot can always be
accessed as the newest message in each of these channels.
Devices that take an input command have a second channel
for that input. In addition to the driver daemons, there are
two controller daemon processes. The balanced process
implements the stable balancing controller for Krang. Control
of the arms and reference forward and rotational speeds

are handled in the separate controld process. Dividing
these controllers promotes robustness by isolating the highly-
critical balance control from other faults. This collection
of driver and controller daemons communicating over Ach
channels implements the real-time, kilohertz control loop for
Golem Krang.

This design produces a system that is efficient, modular,
and robust. The low overhead and suitable semantics of
Ach communication permits real-time control under Linux
using multiple processes. In several cases, Krang contains
multiple identical hardware devices. The message-passing,
multi-process design aids code reuse by allowing access
to duplicated devices with multiple instances of the same
daemon binary – two instances of the ftd daemon for the
F/T sensors, two instances of the robotiqd daemon for the
grippers, and three instances of the pciod daemon for two
arms and torso. The relative independence of each running
process makes this system robust to failures in non-critical
components. For example, an electrical failure in a waist mo-
tor may stall the w pciod process, but the balanced controller
and amciod driver daemons continue running independently,
ensuring that the robot does not fall. Thus, Ach helps enhance
the safety of this potentially dangerous robotic system.

V. VERIFICATION, BENCHMARKS, AND DISCUSSION

A. Formal Verification

We used the SPIN Model Checker [21] to formally ver-
ify Ach. Formal verification is a method to enhance the
reliability of software by first modeling the operation of
that software and then checking that the model adheres to
some specification for performance [22]. SPIN models the
operation of a computer program using the Promela lan-
guage, which is based on the Guarded Command Language
[23] and Communicating Sequential Processes [24]. SPIN
then enumerates all possible world states of that model and
ensures that each state satisfies the given specification.

We verified the ach_put and ach_get procedures
using SPIN. Our model for Ach checks the consistency
of channel data structures, ensures proper transmission of
message data, and verifies freedom from deadlock. Because
model checking enumerates all possible world states, we
can verify these properties for all possible interleavings
of ach_put and ach_get, something that is practically
impossible to achieve through testing alone. By modeling
the behavior of Ach in Promela and verifying its performance
with SPIN, we eliminated errors in the returned status codes
and simplified our implementation. Verification enhanced
both the robustness and simplicity of Ach.

B. Benchmarks

We provide benchmark results for Ach message latencies in
Fig. 5 and include latencies for message sent overs POSIX
pipes as a comparison.

1) Benchmark Procedure: We perform the benchmarks
on an Intel Core 2 Duo E7300 running Ubuntu Linux
10.04 i386, Kernel 2.6.31-11-rt. The benchmark application
performs the following steps.
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Fig. 5. Histograms of Ach and Pipe messaging latencies. Benchmarking performed on a Core 2 Duo running Ubuntu Linux 10.04 with PREEMPT
kernel. The labels αs/βr indicate a test run with α sending processes and β receiving processes.

1) Create and open an Ach channel
2) Fork one or more receiver processes
3) Fork one or more sender processes
4) Senders: Post timestamped messages at the desired

frequency
5) Receivers: Receive messages and record latency of each

messaged based on the timestamp.
We repeat this procedure, varying the frequency and number
of senders and receivers. The benchmark code is included
with the Ach source distribution.

2) Benchmark Results: Our benchmark results in Fig.
5 show that Ach first matches the performance of POSIX
pipes for the single sender/receiver case while also providing
non-HOL-blocking semantics, and then additionally scales
linearly to multiple senders and receivers. The first row
of Fig. 5 shows essentially identical performance between
POSIX pipes and single sender and receiver Ach. This is
expected because the majority of latency should come from
the process context-switch which must occur with both pipes
and Ach. This also indicates that the cost of the context
switch is significantly greater than the cost of the data copy
for the small messages sizes typical of real-time applications.
The next two rows show Ach performance for multiple
senders and receivers. The additional processes increase
latency because channel access is restricted to one process at
a time. This serialization of access gives a linear increase in
the worst-case latency, resulting in 20µs per receiver worst-
case latency increase for the 1kHz rate on our benchmark
platform. These results show that the latency imposed by
Ach still allows us to operate robots at our desired rate of

1kHz

C. Discussion

An important consideration in the design of Ach is the idea
of Mechanism, not Policy [25]. Ach provides a mechanism
to move bytes between processes and a mechanism to notify
callers should something go awry. It does not specify a policy
for serializing arbitrary data structures or a policy for how
to handle all types of errors. Such policies are application
dependent and even within our own research group have
changed across different applications and over time. Thus,
by adopting the mechanism design approach, we maximize
the flexibility and utility of our software.

There is a trade-off between single-process, multi-process,
and multi-threaded approaches that influenced our choice
of a multi-process system design and motivated the devel-
opment of Ach. Software components in a single process
can communicate with a function call whereas components
in different kernel threads or different processes require a
CPU context-switch which is orders of magnitude slower.
The context-switch cost bounds the granularity at which
real-time components may be divided between threads or
processes. On the other hand, when the application can be
parallelized, multiple threads and processes permit true con-
currency, a crucial performance benefit on modern multi-core
CPUs. Multi-threaded approaches generally provide a slight
performance advantage over multi-process programs, and this
advantage may be more substantial if data can be cleverly
shared between the threads. However, the synchronization
of multi-threaded programs is a notoriously difficult task.
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New formal verification methods applied to even mature
real-world multi-threaded programs often find numerous pro-
gramming errors [26], [27]. In comparison, multi-process
programs cannot have these memory consistency errors.
Furthermore, multi-process programs are inherently robust
against failures in individual software components, as each
process can be stopped, started, and modified independently.
Thus, while none of these approaches are universally ideal,
the multi-process design we have adopted does have key
benefits in concurrency and robustness. However, the lack of
appropriate real-time IPC has previously made development
of multi-process real-time applications difficult. We address
this challenge with Ach.

Networked real-time systems are another related area.
However, network protocols pose a different set of require-
ments and challenges from inter-process communication.
Processes on a single host can access a single physical
memory which provides high bandwidth and assumed perfect
reliability; still, care must be taken to ensure consistency of
the memory between asynchronously executing processes. In
contrast, real-time communication across a network need not
worry about memory consistency, but must address issues
such as limited bandwidth, packet loss, collisions, and clock
skew. These differences in requirements imply that different
mechanisms should be used to implement IPC and network
communication. Thus, we intend Ach to be both complemen-
tary to and compatible with networked communication.

VI. CONCLUSIONS

We have presented Ach, a new IPC mechanism for real-time
robotic systems. Compared to standard POSIX IPC and other
robotics middleware [5], [7], [8], [18], Ach provides unique
message-passing semantics which always allow the latest
data sample to be read. The algorithms and data structures
are formally verified, increasing both the robustness and
simplicity of the implementation. Ach has been validated
in the core of a variety of robot control applications for
over three years and has enabled development of efficient
and reliable control software for our robot Golem Krang. In
addition, we are collaborating with the Drexel Autonomous
Systems Lab to implement Linux control software for the
KAIST Hubo using Ach.

The Ach library and sample code can be downloaded at
http://www.golems.org/node/1526. We hope that this open
source IPC will be a useful tool to expedite the development
of new robust robotic systems.
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