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I. Introduction

Correct real-time software is vital for robots in
safety-critical roles such as service and disaster
response. These systems depend on software for
locomotion, navigation, manipulation, and even

seemingly innocuous tasks such as safely regulating battery
voltage. A multi-process software design increases robustness
by isolating errors to a single process, allowing the rest of
the system to continue operating. This approach also assists
with modularity and concurrency. For real-time tasks such
as dynamic balance and force control of manipulators, it is
critical to communicate the latest data sample with minimum
latency. There are many communication approaches intended
for both general purpose and real-time needs [19], [17], [13],
[9], [15]. Typical methods focus on reliable communication or
network-transparency and accept a trade-off of increased mes-
sage latency or the potential to discard newer data. By focusing
instead on the specific case of real-time communication on a
single host, we reduce communication latency and guarantee
access to the latest sample. We present a new Interprocess
Communication (IPC) library, Ach,1 which addresses this need,
and discuss its application for real-time, multiprocess control
on three humanoid robots (Fig. 1).

There are several design decisions that influenced this robot
software and motivated development of the Ach library. First,
to utilize decades of prior development and engineering, we
implement our real-time system on top of a POSIX-like
Operating System (OS)2. This provides us with high-quality
open source platforms such as GNU/Linux and a wide variety
of compatible hardware and software. Second, because safety
is critical for these robots, the software must be robust.
Therefore, we adopt a multiple process approach over a single-
process or multi-threaded application to limit the potential
scope of errors [18]. This implies that sampled data must be
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Fig. 1. Hubo, Golem Krang, and NAO: Existing Robotic Systems where Ach
provides communications between hardware drivers, perception, planning, and
control algorithms.

passed between OS processes using some form of Interprocess
Communication (IPC). Since general purpose IPC favors older
data [19] (see Sect. II), while real-time control needs the latest
data, we have developed a new IPC library.

This article discusses a POSIX Interprocess Communication
(IPC) library for the real-time control of physical processes
such as robots, describes its application on three different hu-
manoid platforms, and compares this IPC library with a variety
of other communication methods. This library, called Ach,
provides a message-bus or publish-subscribe communication
semantics – similar to other real-time middleware and robotics
frameworks [13], [15] – but with the distinguishing feature
of favoring newer data over old. Ach is formally verified,
efficient, and it always provides access to the most recent data
sample. To our knowledge, these benefits are unique among
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existing communications software.

II. Review of POSIX IPC
POSIX provides a rich variety of IPC that is well suited for
general purpose information processing, but none are ideal for
real-time robot control. Typically, a physical process such as
a robot is viewed as a set of continuous, time-varying signals.
To control this physical process with a digital computer, one
must sample the signal at discrete time intervals and perform
control calculations using the sampled value. To achieve high-
performance control of a physical system, we must process
the latest sample with minimum latency. This differs from
the requirements of general computing systems which focus
on throughput over latency and favor prior data over latter
data. Thus, for robot control, it is better to favor new data
over old data whereas nearly all POSIX IPC favors the old
data. This problem is typically referred to as Head of Line
(HOL) Blocking. The exception to this is POSIX shared
memory. However, synchronization of shared memory is a
difficult programming problem, making the typical and direct
use of POSIX shared memory unfavorable for developing
robust systems. Furthermore, some parts of the system, such
as logging, may need to access older samples, so this also
should be permitted at least on a best-effort basis. Since no
existing implementation satisfied our requirements for low-
latency exchange of most-recent samples, we have developed
a new open source IPC library.

The three main types of POSIX IPC are streams, datagrams,
and shared memory. We review each of these types and
consider why these general-purpose IPC mechanisms are not
ideal for real-time robot control. Table I contrasts the response
of each method to a full buffer, and Table II summarizes the
pros and cons of each method. A thorough survey of POSIX
IPC is provided in [19].

A. Streams
Stream IPC includes pipes, FIFOs, local-domain stream sock-
ets, and TCP sockets. These IPC mechanisms all expose the
file abstraction: a sequence of bytes accessed with read
and write. All stream-based IPC suffers from the HOL
blocking problem; we must read all the old bytes before we
see any new bytes. Furthermore, to prevent blocking of the
reading or writing process, we must resort to more complicated
nonblocking or asynchronous I/O.

B. Datagrams
1) Datagram Sockets: Datagram sockets perform better than
streams in that they are less likely to block the sender.
Additionally, some types of datagram sockets can multicast
packets, efficiently transmitting them to multiple receivers.
However, datagram sockets give a variation on the HOL
blocking problem where newer messages are simply lost if
a buffer fills up. This is unacceptable since we require access
to the most recent data.

2) POSIX Message Queues: POSIX Message Queues are
similar to datagram sockets and also include the feature of
message priorities. The downside is that it is possible to block
if the queue fills up. Consider a process that gets stuck and

Method Action on full buffer
Stream Block sender, or Error

Datagram Drop newest message, or Error
Message Queue Block sender, or Error

Ach Drop oldest message

TABLE I
FULL BUFFER SEMANTICS

stops processing its message queue. When it starts again, the
process must still read or flush old messages before getting
the most recent sample.

C. Shared Memory
POSIX shared memory is very fast and one could, by simply
overwriting a variable, always have the latest data. However,
this provides no recourse for recovering older data that may
have been missed. In addition, shared memory presents syn-
chronization issues which are notoriously difficult to solve
[10], making direct shared memory use less suitable for safety
critical real-time control.

The data structure which Ach most closely resembles is
the circular array. Circular arrays or ring buffers are common
data structures in device drivers and real-time programs, and
the implementation in Ach provides unique features to satisfy
our requirements for a multi-process real-time system. Typical
circular buffers allow only one producer and one consumer
with the view that the producer inserts data and the consumer
removes it. Our robots have multiple producers and multiple
consumers writing and reading a single sequence of messages.
A message reader cannot remove a message, because some
other process may still need to read it. Because of this different
design requirement, Ach uses a different data structure and
algorithm in order to perform real-time IPC among multiple
processes.

D. Further Considerations
1) Nonblocking and Asynchronous IO approaches: There
are several approaches that allow a single process or thread to
perform IO operations across several file descriptions. Asyn-
chronous IO (AIO) may seem to be the most appropriate for
this application. However, the current implementation under
Linux is not as mature as other IPC mechanisms. Methods
using select/poll/epoll/kqueue are widely used for network
servers. Yet, both AIO and select-based methods only mitigate
the HOL problem, not eliminate it. Specifically, the sender will
not block, but the receiver must read or flush the old data from
the stream before it can see the most recent sample.

2) Priorities: To our knowledge, none of the stream or
datagram forms of IPC consider the issue of process priorities.
Priorities are critical for real-time systems. When there are
two readers that want the next sample, we want the real-time
process, such as a motor driver, to get the data and process it
before a non real-time process, such as a logger, does anything.

E. General, Real-Time, Robotics Middleware
In addition to the core POSIX IPC mechanisms, there are
many messaging middlewares and robot software architec-
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Method Pro Con Examples
Streams Reliable, Ordered Head-of-Line Blocking pipes, TCP, Local Socket

Datagrams Multicast, Does not block sender Full buffer blocks or discards new data UDP, Local Socket
Message Queues Can avoid blocking sender Full buffer blocks or discards new data POSIX Message Queues
Shared Memory Fast Last only, Synchronization issues POSIX Shared Memory, mmap

Asynchronous I/O No blocking Immature, favors old data POSIX Asynchronous I/O
Nonblocking I/O No blocking Must retry, favors old data O NONBLOCK
Multiplexed I/O Handles many connections Receiver must read/discard old data select, poll, epoll, kqueue

TABLE II
POSIX IPC SUMMARY, PROS AND CONS FOR REAL-TIME

tures. However, these are either not Open Source or not
ideal for our multi-process real-time domain. Many of these
approaches build on an underlying POSIX IPC method, inher-
iting that method’s strengths and weaknesses. Furthermore,
our benchmark results for some of these methods (see Fig. 8)
show that they impose noticeable overhead compared to the
underlying kernel IPC.

Several frameworks and middleware focus on real-time
control or robotics. The Orocos Real-Time Toolkit [3] and
NAOqi [1] are two architectures for robot control, but they do
not meet our requirements for flexible IPC. iRobot’s Aware2.0
is not open source, and Microsoft Robotics Studio is not open
source and does not run on POSIX systems. ROS [15] provides
open source TCP and UDP message transports, which suffer
from the aforementioned HOL blocking problem. CORBA
provides object-oriented remote procedure call, an event noti-
fication service, and underlies the OpenRTM middleware; our
benchmark results (see Fig. 8) show that TAO CORBA [17],
a popular implementation, gives poor messaging performance
compared to alternatives.

In contrast, Data Distribution Service [13] and LCM [9]
are publish-subscribe network protocols. LCM is based on
UDP multicast which efficiently uses network bandwidth to
communicate with multiple subscribers. However, UDP does
drop newer packets when the receiving socket buffer is full.
These protocols may be complementary to the efficient and
formally verified IPC we present here.

In conclusion, none of these middlewares met our needs
for an open source, light-weight, and non-HOL blocking IPC.
However, the design of Ach facilitates integration with some
of these other frameworks (see sect. IV-B and sect. IV-C).

III. The Ach IPC Library
Ach provides a message bus or publish-subscribe style of
communication between multiple writers and multiple readers.
A real-time system has multiple Ach channels across which
individual data samples are published. Messages are sent as
byte arrays, so arbitrary data may be transmitted such as float-
ing point vectors, text, images, and binary control messages.
Each channel is implemented as two circular buffers, (1) a data
buffer with variable sized entries and (2) an index buffer with
fixed-size elements indicating the offsets into the data buffer.
These two circular buffers are written in a channel-specific
POSIX shared memory file. Using this formulation, we solve
and formally verify the synchronization problem exactly once
and contain it entirely within the Ach library.

The Ach interface consists of the following procedures:

index head index free data head data free

2 3

4 1 ∅ ∅

I0 I1 I2 I3

∅ a0 a1 a2 a3 b0 ∅ ∅

D0 D1 D2 D3 D4 D5 D6 D7

header

index array

data array

Fig. 2. Logical Memory Structure for an Ach shared memory file. In this
example, I0 points to a four byte message starting at D1, and I1 points to a
one byte message starting at D5. The next inserted message will use index
cell I2 and start at D6. There are two free index cells and three free data
bytes. Both arrays are circular and wrap around when the end is reached.

• ach_create: Create the shared memory region and
initialize its data structures

• ach_open: Open the shared memory file and initialize
process local channel counters

• ach_put: Insert a new message into the channel
• ach_get: Receive a message from the channel
• ach_close: Close the shared memory file

Channels must be created before they can be opened. Cre-
ation may be done directly by either the reading or writing
process, or it may be done via the shell command, ach mk
channel_name, before the reader or writer start. This is
analogous to the creation of FIFOs with mkfifo called either
as a shell command or as a C function. After the channel is
created, each reader or writer must open the channel before it
can get or put messages.

A. Channel Data Structure
The core data structure of an Ach channel is a pair of circular
arrays located in the POSIX shared memory file, Fig. 2. It
differs from typical circular buffers by permitting multiple
consumers to access the same message from the channel. The
data array contains variable sized elements which store the
actual message frames sent through the Ach channel. The
index array contains fixed size elements where each element
contains both an offset into the data array and the length of
that data element. A head offset into each array indicates both
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the place to insert the next data and the location of the most
recent message frame. Each reader maintains its own offset
into the index array, indicating the last message seen by that
reader. This pair of circular arrays allows readers to find the
variable size message frames based on the index array offset
and the corresponding entry in the data array.

Access to the channel is synchronized using a mutex and
condition variable. This allows readers to either periodically
poll the channel for new data or to wait on the condition
variable until a writer has posted a new message. Using a
read/write lock instead would have allowed only polling. Ad-
ditionally, synchronization using a mutex prevents starvation
and enables proper priority inheritance between processes,
important to maintaining real-time performance.

B. Core Procedures
Two procedures compose the core of ach: ach_put and
ach_get. Detailed pseudocode is provided in [6].

1) ach put: The procedure ach_put inserts new messages
into the channel. It is analogous to write, sendmsg, and
mq_send. The procedure is given a pointer to the shared
memory region for the channel and a byte array containing the
message to post. There are four broad steps to the procedure:
(1) Get an index entry. If there is at least one free index entry, use

it. Otherwise, clear the oldest index entry and its corresponding
message in the data array.

(2) Make room in the data array. If there is enough room already,
continue. Otherwise, repeatedly free the oldest message until
there is enough room.

(3) Copy the message into data array.
(4) Update the offset and free counts in the channel structure.

2) ach get: The procedure ach_get receives a message
from the channel. It is analogous to read, recvmsg, and
mq_receive. The procedure takes a pointer to the shared
memory region, a storage buffer to copy the message to, the
last message sequence number received, the next index offset
to check for a message, and option flags indicating whether
to block waiting for a new message and whether to return the
newest message bypassing any older unseen messages. There
are four broad steps to the procedure:
(1) If we are to wait for a new message and there is no new message,

then wait. Otherwise, if there are no new messages, return a status
code indicating this fact.

(2) Find the index entry to use. If we are to return the newest
message, use that entry. Otherwise, if the next entry we expected
to use contains the next sequence number we expect to see, use
that entry. Otherwise, use the oldest entry.

(3) According to the offset and size from the selected index entry,
copy the message from the data array into the provided storage
buffer.

(4) Update the sequence number count and next index entry offset
for this receiver.

IV. Case Studies
A. Dynamic Balance on Golem Krang
Golem Krang, Fig. 3, is a dynamically balancing, bi-manual
mobile manipulator designed and built at the Georgia Tech Hu-
manoid Robotics Lab [20]. All the real-time control for Krang
is implemented through the Ach IPC library. This approach
has improved software robustness and modularity, minimizing
system failures and allowing code reuse both within Krang

Ctrl PC

Torso PRLLeft Arm Right Arm

IMULeft Drive Right Drive

BMS
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Console PC

Gamepad
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Key
WIFI
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RS232
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Fig. 3. Block diagram of electronic components on Golem Krang. Blocks
inside the dashed line are onboard and blocks outside are offboard. Control
software runs on the Pentium-M Control PC under Ubuntu Linux, which
communicates over eight Controller Area Network (CAN) buses to the
embedded hardware. The arms are Schunk LWA3s with ATI wrist force-
torque sensors and Robotiq adaptive grippers. The torso is actuated using
three Schunk PRL motor modules. The wheels are controlled using AMC
servo drives. The battery management system (BMS) monitors the lithium
cells.

wheel state

amciod

balanced

l hand state

w pciodl robotiqd

imud

waist state

r ftd

r arm inputwaist inputr hand input

r robotiqd

controld

imu

l arm state

r ft

r arm state

l ftd

cmd

nav

wheel input

l pciod

r hand state

r pciod

l arm input

l ft

l hand input

Fig. 4. Block diagram of primary software components on Golem Krang.
Gray ovals are user-space driver processes, green ovals are controller pro-
cesses, and rectangles are Ach channels. Each hardware device, such as the
IMU or LWA3, is managed by a separate driver process. Each driver process
sends state messages, such as positions or forces, over a separate state channel.
Devices that take input, such as a reference velocity, have a separate input
channel.

with other projects [7] sharing the same hardware components.
The software for Krang is implemented as a collection

of processes communicating over Ach channels, Fig. 4. In
this design, providing a separate state Ach channel for each
hardware device ensures that the current state of the robot can
always be accessed through the newest messages in each of
these channels. Additionally, splitting the control into separate
balanced, for stable balancing, and controld, for arm
control, processes promotes robustness by isolating the highly-
critical balance control from other faults. This collection
of driver and controller daemons communicating over Ach
channels implements the real-time, kilohertz control loop for
Golem Krang.

This design provides several advantages for control on
Krang. The low overhead and suitable semantics of Ach
communication permits real-time control under Linux using
multiple processes. In several cases, Krang contains multi-
ple identical hardware devices. The message-passing, multi-
process design aids code reuse by allowing access to dupli-
cated devices with multiple instances of the same daemon
binary – two instances of the ftd daemon for the F/T sensors,
two instances of the robotiqd daemon for the grippers, and
three instances of the pciod daemon for two arms and torso.
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The relative independence of each running process makes
this system robust to failures in non-critical components. For
example, an electrical failure in a waist motor may stall
the w_pciod process, but – without any additional code
– the balanced controller and amciod driver daemons
continue running independently, ensuring that the robot does
not fall. Thus, Ach helps enhance the safety of this potentially
dangerous robot.

B. Speed Regulation on NAO
The Aldebaran NAO is a 0.5m, 5kg bipedal robot with
25 degrees-of-freedom (DOF). It contains an on-board Intel
Atom PC running a GNU/Linux distribution with the NAOqi
framework to control the robot. User code is loaded into the
NAOqi process as dynamic library modules. We used Ach to
implement Human-Inspired Control [14] on the NAO [5]. The
Human-Inspired Control approach achieves provably stable,
human-like walking on robots by identifying key parameters
in human gaits and transferring these to the robot through an
optimization process. To implement this approach, real-time
control software to produce the desired joint angles must run
on the NAO’s internal computer.

The NAOqi framework provides an interface to the robot’s
hardware; however, it presents some specific challenges for ap-
plication development – and for the implementation of Human-
Inspired Control in particular. NAOqi is slow and memory-
intensive, consuming at idle 15% of available CPU time and
20% of available memory. Additionally, real-time user code
must run as a callback function, which is awkward for the
desired controller implementation. Using Ach to move the
controller to a separate process improves the implementation.

A multi-process software design, Fig. 5, addresses these
challenges with NAOqi and enhances the robustness and effi-
ciency of Human-Inspired Control on the NAO. Each process
runs independently, so an error in a non-critical process,
such as logger/debugger, cannot affect other processes,
eliminating a potential failure. The user processes can be
stopped and started within only a few seconds. In contrast,
NAOqi takes about 15 seconds to start. The independence
of processes means NAOqi need not be restarted so long as
libamber is unchanged. Since libamber is a minimal
module, only interfacing with the Ach channels and accessing
the NAO’s hardware, it can be reused unmodified for different
applications on the NAO. Different projects can run different
controller processes, using Ach and libamber to access
NAO’s hardware, all without restarting the NAOqi process. In
addition, using standard debugging tools such as GDB is much
easier since the user code can be executed within the debugger
independently of the NAOqi framework. Thus, converting the
NAO’s control software to a multi-process design simplified
development and improved reliability.

C. Reliable Software for the Hubo2+
The Hubo2+ is a 1.3m tall, 42kg full-size humanoid robot,
produced by the Korean Advanced Institute of Science and
Technology (KAIST) and spinoff company Rainbow Inc. [4].
It has 38 DOF: six per arm and leg, five per hand, three in the
neck, and one in the waist. Sensors include three-axis force-
torque sensors in the wrists and ankles, accelerometers in the

Fig. 7. Hubo (left) turning a valve via Hubo-Ach alongside Daniel M. Lofaro
(right). Valve turning developed in conjunction with Dmitry Berenson at WPI
for the DARPA Robotics Challenge.

feet, and an inertial measurement unit (IMU). The sensors and
embedded motor controllers are connected via a Controller
Area Network to a pair of Intel Atom PC104+ computers.

Hubo-Ach3 is an Ach-based interface to Hubo’s sensors
and motor controllers [12]. This provides a conventional
GNU/Linux programming environment, with the variety of
tools available therein, for developing applications on the
Hubo. It also links the embedded electronics and real-time
control to popular frameworks for robotics software: ROS [15],
OpenRAVE, and MATLAB.

Reliability is a critical issue for software on the Hubo.
As a bipedal robot, Hubo must constantly maintain dynamic
balance; if the software fails, it will fall and break. A multi-
process software design improves Hubo’s reliability by isolat-
ing the critical balance code from other non-critical functions,
such as control of the neck or arms. For the high-speed, low-
latency communications and priority access to latest sensor
feedback, Ach provides the underlying IPC.

Hubo-Ach handles CAN bus communication between the
PC and embedded electronics. Because the motor controllers
synchronize to the control period in a phase lock loop (PLL),
the single hubo-daemon process runs at a fixed control
rate. The embedded controllers lock to this rate and lin-
early interpolate between the commanded positions, providing
smoother trajectories in the face of limited communication
bandwidth. This communication process also avoids bus satu-
ration; with CAN bandwidth of 1 Mbps and a 200Hz control
rate, hubo-daemon utilizes 78% of the bus. Hubo-daemon
receives position targets from a feedforward channel and
publishes sensor data to the feedback channel, providing the
direct software interface to the embedded electronics. Fig. 6
shows an example control loop integrating Hubo-Ach and
ROS.

Hubo-Ach is in use for numerous projects at several research
labs. Users include groups at MIT, WPI, Ohio State, Purdue,
Swarthmore College, Georgia Tech, and Drexel University.
These projects primarily revolve around the DARPA Robotics

3Available under permissive license, http://github.com/hubo/hubo-ach
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Fig. 5. Block diagram of primary software components on NAO. Solid blocks are real-time processes, and dashed blocks are non-real-time processes. NAOqi
loads the libamber module to communicate over Ach channels. The motionControl process performs feedback control while the logger/debugger
process records data from the Ach channels. The Supervisor Generator process performs high-level policy generation for speed control.
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Fig. 6. Block diagram of feedback loop integrating Hubo-Ach and ROS. The planner process computes trajectories, and the rviz process displays a 3D
model of Hubo’s current state. The hubo-ach-ros process bridges the Ach channels with ROS topics. The filter process smooths trajectories to reduce
jerk. Hubo-daemon communicates with the embedded motor controllers.

Challenge (DRC)4 team DRC-Hubo5. The DRC includes
rough terrain walking, ladder climbing, valve turning, vehicle
ingress/egress and more. Fig. 7 shows the Hubo using the
Hubo-Ach system to turn a valve.

Hubo-Ach helps the development of reliable, real-time
applications on the Hubo. Separating software modules into
different processes increases system reliability. A failed pro-
cess can be independently restarted, minimizing the chance
of damage to the robot. In addition, the controllers can run
at fast rates because Ach provides high-speed, low-latency
communication with hubo-daemon. Hubo-Ach provides a
C API callable from high-level programming languages, and
it integrates with popular platforms for robot software such
as ROS and MATLAB, providing additional development
flexibility. Hubo-Ach is a validated and effective interface
between the mechatronics and the software control algorithms
of the Hubo full-size humanoid robot.

V. Performance and Discussion
A. Formal Verification
We used the SPIN Model Checker [8] to formally verify Ach.
Formal verification is a method to enhance the reliability of
software by first modeling the operation of that software and
then checking that the model adheres to a specification for
performance. SPIN models concurrent programs using the
Promela language. Then, it enumerates all possible world
states of that model and ensures that each state satisfies
the given specification. This can detect errors that are dif-
ficult to find in testing. Because process scheduling is non-
deterministic, testing may not reveal errors due to concurrent
access, which could later manifest in the field. However,
because model checking enumerates all possible process in-
terleavings, it is guaranteed to detect concurrency errors in

4http://www.theroboticschallenge.org/
5http://drc-hubo.com/

the model.
We verified the ach_put and ach_get procedures using

SPIN. Our model for Ach checks the consistency of channel
data structures, ensures proper transmission of message data,
and verifies freedom from deadlock. Model checking verifies
these properties for all possible interleavings of ach_put
and ach_get, which would be practically impossible to
achieve through testing alone. By modeling the behavior of
Ach in Promela and verifying its performance with SPIN, we
eliminated errors in the returned status codes and simplified
our implementation, improving the robustness and simplicity
of Ach.

B. Benchmarks
We provide benchmark results of message latency for Ach
and a variety of other kernel IPC methods as well as the
LCM, ROS, and TAO CORBA middleware6. Latency is often
more critical than bandwidth for real-time control as the
amount of data per sample is generally small, e.g., state
and reference values for several joint axes. Consequently,
the actual time to copy the data is negligible compared to
other sources of overhead such as process scheduling. The
benchmark application performs the following steps:

1) Initialize communication structures
2) fork sending and receiving processes
3) Sender: Post timestamped messages at the desired fre-

quency
4) Receivers: Receive messages and record latency of each

messaged based on the timestamp
We ran the benchmarks under two kernels: Linux PRE-

EMPT RT and Xenomai. PREEMPT RT is a patch to the
Linux kernel that reduces latency by making the kernel fully
preemptible. Any Linux application can request real-time pri-
ority. Xenomai runs the real-time Adeos hypervisor alongside

6Benchmark code available at http://github.com/ndantam/ipcbench
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messages beat, and “Max” is the maximum recorded latency. Right-side plots show the limits of Ach performance on Linux PREEMPT RT, with a 100 = 1
latency ratio indicating latency of an entire cycle. The upper plot shows the latency ratio for various control cycle frequencies. The discontinuity above 50kHz
occurs due to transmission time exceeding the cycle period and consequent missed messages. The lower plot shows the latency ratio resulting from passing
the message through multiple intermediate processes.

a standard Linux kernel. Real-time applications communicate
through Adeos via an API skin such as RTDM, µITRON,
or POSIX; these applications are not binary compatible with
Linux applications, though the POSIX skin is largely source
compatible.

Fig. 8 shows the results of the benchmarks, run on an
Intel Xeon 1270v2 under both Linux PREEMPT RT and
Xenomai’s POSIX skin. We used Linux 3.4.18 PREEMPT RT,
Xenomai 2.6.2.1/RTnet 0.9.13/Linux 3.2.217, Ach 1.2.0, LCM
1.0.0, ROSCPP 1.9.50, and TAO 2.2.1 with ACE 6.2.1. We
benchmarked one and two receivers, corresponding to the
communication cases in Sect. IV. Each test lasted for 600
s, giving approximately 6 × 105 data points per receiver.
These results show that for the use cases in Sect. IV, where

7While we were able to test RTnet’s loopback performance, the RTnet
driver for our Ethernet card caused a kernel panic. Similar stability issues
with Xenomai were noted in [2]

communication is between a small number of processes, Ach
offers a good balance of performance in addition to its unique
latest-message-favored semantics.

As an approximate measure of programmer effort required
for each of these methods, Fig. 9 summarizes the Source
Lines of Code8 for the method-specific code in the benchmark
program. Counts include message and interface declarations
and exclude generated code. To give a more fair comparison,
we attempted to consistently check errors across all methods.
Most methods have similar line counts, with sockets usually
requiring a small amount of extra code to set up the con-
nection. The pipe code is especially short because the file
descriptors are passed through fork; this would not work
for unrelated processes. The networked methods in the test
do not consider security, which would necessarily increase

8Measured using http://www.dwheeler.com/sloccount/
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Fig. 9. Source Lines of Code for each Benchmarked Method

complexity of networked real-world applications, while Ach,
Message Queues, and Local Domain Sockets implicitly control
local data access based on user IDs. TAO CORBA stands out
with several times more code than the other methods. It is
also notable that the higher-level frameworks in this test did
not result in significantly shorter communication code than
direct use of kernel IPC.

C. Discussion
The performance limits illustrated in Fig. 8 indicate the
potential applicability of Ach. The latency ratio compared to
hop count is particularly important because it bounds the min-
imum granularity at which the control system can be divided
between processes. On our test platform, significant overhead,
i.e., exceeding 25% of the 1kHz control cycle, is incurred
when information must flow serially through approximately
32 processes. This cost is import to consider when dividing
computation among different processes. For higher control
rates, our test platform reaches 25% messaging overhead at
approximately 10kHz. For the robots in Sect. IV, the embed-
ded components, particularly the CAN buses, effectively limit
control rates to 1kHz or lower; Ach is not the bottleneck for
these systems. However, implementing systems that do require
10kHz or greater control rates would be difficult with Ach
on Linux PREEMPT RT. These performance considerations
show the range of systems for which this software design
approach is suitable.

In addition to performance considerations, it is also critical
to note the semantic differences between communication meth-
ods. The primary unique feature of Ach is that newer messages
always supersede older messages. The other message-passing
methods give priority to older data, and will block or drop
newer messages when buffers are full. CORBA also differs
from the other methods by exposing a remote procedure call
rather than a message-passing interface, though the CORBA
Event Service layers message passing on top of remote proce-
dure call. Selecting appropriate communication semantics for
an application simplifies implementation.

Some of the benchmarked methods also operate trans-
parently across networks. This can simplify distributing an
application across multiple machines, though this process is
not seamless due to differences between local and network

communication [16]. Processes on a single host can access
a unified physical memory which provides high bandwidth
and assumed perfect reliability; still, care must be taken to
ensure memory consistency between asynchronously execut-
ing processes. In contrast, real-time communication across a
network need not worry about memory consistency, but must
address issues such as limited bandwidth, packet loss, colli-
sions, clock skew, and security. With Ach, we have focused
on efficient, latest-message-favored communication between
a few processes on a single host. We intend the Ach double-
circular-buffer implementation to be complementary to, and its
message-passing interface compatible with, networked com-
munication. This meets the communication requirements for
systems such as those in Sect. IV.

An important consideration in the design of Ach is the idea
of Mechanism, not Policy [18]. Ach provides a mechanism
to move bytes between processes and to notify callers of
errors. It does not specify a policy for serializing arbitrary
data structures or handling all types of errors. Such policies
are application dependent and even within our own research
groups have changed across different applications and over
time. This separation of policy from mechanism is important
for flexibility.

This flexibility is helpful when integrating with other com-
munication methods or frameworks. To integrate with ROS on
Hubo (see sect. IV-C), we created a separate process to trans-
late between real-time Ach messages and non-real-time ROS
messages. This approach is straightforward since both Ach and
ROS expose a publish/subscribe message passing interface. On
the other hand, NAOqi exposes a callback interface. Still, we
can integrate with this (see sect. IV-B) by relaying Ach mes-
sages within the NAOqi callback. In general, integrating Ach
with other frameworks requires serializing framework data
structures to send over an Ach channel. However, since Ach
works with raw byte arrays, it is possible directly use existing
serialization methods such as XDR, Boost.Serialization, ROS
Genmsg, Google Protocol Buffers, or contiguous C structures.

Achieving real-time bounds on general-purpose comput-
ing systems presents an overall challenge. The Linux PRE-
EMPT RT patch seamlessly runs Linux applications with
significantly reduced latency compared to vanilla Linux, and
work is ongoing to integrate it into the mainline kernel.
However, it is far from providing formally guaranteed bounds
on latency. Xenomai typically offers better latency than PRE-
EMPT RT [2] but is less polished and its dual kernel approach
complicates development. There any many other operating
systems with dedicated focus on real-time, e.g., VxWorks,
QNX, TRON. In addition to operating system selection, the
underlying hardware can present challenges. CPU frequency
scaling, which reduces power usage, can significantly increase
latency. On x86/AMD64 processors, System Management In-
terrupts9 preempt all software, including the operating system,
potentially leading to latencies of hundreds of microseconds.
A fundamental challenge is that general purpose computation
considers time not in terms of correctness but only as a quality
metric – faster is better – whereas real-time computation
depends on timing for correctness [11]. These issues are

9http://www.intel.com/design/processor/manuals/253669.pdf
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important in overall real-time system design.

VI. Conclusion
Ach is a new IPC method for real-time communication,
demonstrated on multiple robotic systems. Compared to stan-
dard POSIX IPC and the communication mechanisms em-
ployed by popular robotics middleware [19], [15], [1], Ach’s
unique message-passing semantics always allow the latest data
sample to be read. It provides good performance for typical
communication needs on humanoid robots. The algorithms and
data structures are formally verified. Ach has been validated
in the core of a variety of robot control applications and has
aided development of efficient and reliable control software
for our robots Golem Krang, Hubo, and NAO.

The Ach library and sample code can be downloaded at http:
//www.golems.org/projects/ach.html. By providing this open
source IPC library to the robotics community, we hope that
it will be a useful tool to expedite the development of new
robust systems.
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