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Spherical Parabolic Blends for Robot Workspace Trajectories

Neil Dantam and Mike Stilman

Abstract— We present a new approach to generate workspace
trajectories for multiple waypoints. To satisfy workspace con-
straints with constant-axis rotation, this method splines a
given sequence of orientations, maintaining constant-axis within
each segment. This improves on other approaches which are
point-to-point or take indirect paths. We derive this approach
by blending subsequent spherical linear interpolation phases,
computing interpolation parameters so that rotational veloc-
ity is continuous. We show this method first on simulated
manipulator and then perform a physical screwing task on
a Schunk LWA4 robot arm. Finally, we provide permissively
licensed software which implements this trajectory generation
and tracking.1

I. INTRODUCTION

Many robot tasks require tracking workspace motions.
Tasks such as screwing in a light bulb or turning a doorknob
impose constraints on the motion: rotation must occur along
a single fixed axis. For such tasks, we focus on moving
with straight-line translation and constant-axis rotation. A
common way to specify motions is to provide a sequence
of n workspace points for the robot to move through. While
generating smooth trajectories from waypoints for both joint-
space and the Euclidean-space translations is well studied,
the task of continuously transitioning between constant-axis
rotations is more challenging. We present a new method
to transition through a sequence of constant-axis rotations
based on parabolic blending of spherical linear interpolation
(SLERP) segments.

The proposed method generates a robot trajectory through
a sequence of waypoints such that the axis of rotation re-
mains constant between waypoints and rotational velocity is
continuous. Compared to typical approaches for interpolation
of robot workspace orientations, this method provides a
constant rotational axis between waypoints, is invariant to
the local reference frame, and avoids gimbal lock. Compared
to classic SLERP, this method transitions through multiple
waypoints without stopping whereas SLERP is point-to-
point. Compared to typical methods for quaternion splines,
this method provides a constant axis of rotation between
waypoints. We discuss the application of quaternion inter-
polation to robot inverse kinematics (see Sect. III). Then,
we derive the equations for spherical parabolic blends to
produce our desired trajectories (see Sect. IV), summarizing
the trajectory generation algorithm (see Sect. V). Finally, we
demonstrate this method on simulated and physical robot
manipulators (see Sect. VI).
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1Software available at https://github.com/golems/reflex

Fig. 1. Demonstrating spherical blending for a screwing task on a bimanual
Schunk LWA4 manipulator with Schunk SDH hands.

II. RELATED WORK

Joint-space interpolation is a well studied research topic
[5], [12], [11]. However, because the workspace orientations,
SO(3), are non-Euclidean, these joint-space methods are not
directly applicable to orientation interpolation, particularly
when we are concerned with the path taken between way-
points.

A related approach is to apply task constraints while
planning a joint-space path [16], [17], [12], [8], [3]. We
are considering a different problem: computing a workspace
trajectory from a given sequence of waypoints. This enables
correcting tracking errors directly in the workspace space
(see Sect. V-B).

Typical methods for interpolating robot workspace orien-
tations use Euler angles or rotation vectors (the rotation axis
scaled by the rotation angle or equivalently the logarithm of
the rotation). Interpolating the rotation vector representation
[5, p217] varies the angle of rotation, which can produce
undesirable paths, see Fig. 3. Euler angle approaches must
contend with singularities (gimbal lock). Another approach
is to vary the angle of a relative axis-angle orientation [15,
p187], though this alone does not address continuity through
waypoints. Instead, the quaternion representation is well
suited for orientation interpolation as it avoids singularities
with Euler angles and provides better paths than rotation
vectors.

Spherical Linear Interpolation (SLERP) [14] interpolates
between two quaternions along the unit, 4-dimensional
hyper-sphere. SLERP has been applied to robot manipulation
[4], [1], [2]. SLERP provides the desired constant axis of
rotation, but is point-to-point, stopping at the beginning and
end of each segment. We improve upon this by transitioning
through a sequence of waypoints without stopping.

There is a large body of work on quaternion splines. The
primary application domain for these approaches has been

https://github.com/golems/reflex
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Fig. 2. Layers of abstraction going from a sequence of waypoints to inputs
at each manipulator axis.
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Fig. 3. Comparison of rotation vector [5, p217] and Spherical Linear
Interpolation. In (a)-(c), interpolating the axis angle representation can
give undesirable intermediate orientation (b). In (d)-(f), Spherical Linear
Interpolation maintains a constant axis of rotation.

computer animation where the intermediate path may not
be rigidly constrained compared to the end-effector of a
physical robot. Consequently, methods such as quaternion
Bezier curves [14], [10], SQUAD [6], and quaternion cubic
splines [9] do not provide a constant axis of rotation. A
key difference in our approach from these previous methods
is that we explicitly differentiate between the interpolation
parameter u and time t. By considering du/dt, we can
provide a smooth path with constant rotational axis for the
bulk of the motion.

III. SLERP FOR INVERSE KINEMATICS

Spherical Linear Interpolation (SLERP) interpolates be-
tween an initial and final unit quaternion on the unit sphere
[14]. SLERP can be computed as:

slerp (q1, q2;u) , q1
sin ((1 − u)θ)

sin θ
+ q2

sin (uθ)

sin θ
(1)

where q1 and q2 are the beginning and end points of the
interpolation, interpolation parameter u varies in [0, 1], and
θ = cos−1 (q1 · q2).2 To track this interpolation in real-time,
we compute u as a function of time.

We build upon SLERP to ensure smoothness of the path
by considering the derivatives. Note that we must distinguish
between the derivative with respect to interpolation parameter

2A more accurate form is θ = 2atan2 (|q1 − q2| , |q1 + q2|).

u and with respect to time t.

dq

dt
=
dq

du

du

dt
(2)

For a constant q1 and q2, the SLERP derivative is:

dq

du
(u) = q1

−θ cos ((1 − u)θ)

sin θ
+ q2

θ cos (uθ)

sin θ
(3)

Given dq/dt, we can directly compute angular velocity as:

ω = 2
dq

dt
⊗ q∗ (4)

where q∗ is the conjugate of q and ⊗ is the quaternion
multiplication operation.

This is then readily applied to robot workspace control via
the Jacobian pseudo-inverse:

φ̇r = (J+)

[
ẋ
ω

]
(5)

where J is the manipulator Jacobian, φ̇r is the computed
reference joint velocities and ẋ is the desired translational
velocity. For a robust, practical implementation, further con-
siderations in (5) are also possible to correct position error
and handle configurations near joint singularities [13].

However, we still need a method to compute du/dt and
ensure continuity of dq/dt

To simplify notation, we will sometimes write the time
derivative dα

dt as α̇.

IV. DERIVATION OF SPHERICAL PARABOLIC BLENDS

SLERP is useful for robots because it provides a constant
axis of rotation during the motion. However, this constant
axis of rotation introduces difficulties if we want to follow
a path with waypoints. Consider the path from qi via qj to
qk. If we SLERP from qi to qj and qj to qk, the path from
i to j will have one axis of rotation and the path from j to
k will have a different axis of rotation. This would produce
a discontinuity in rotational velocity at point j, which could
not be suitably followed by a physical robot. Thus, we
must transition from the axis ij to axis jk, maintaining C1

continuity:
Definition 1 (Differentiability class): A function f(t) is

Ck continuous if its derivatives f ′, f ′′, . . . , f (k) exist and
are continuous.

In the constant-axis, linear region from qi to qj , we
compute the orientation and its derivative via SLERP.

u =
t− ti
tj − ti

(6)

q(t) = slerp (qi, qj ;u) (7)
du

dt
=

1

tj − ti
(8)

dq

dt
=
dq

du
(u)

du

dt
(9)

where ti and tj are the times to reach orientations qi and qj ,
respectively.

Around point qj , we smoothly change the axis of rotation
from that of ij to that of jk. Over some blending interval
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tb, we “stretch” the ij interpolation past tj and the jk
interpolation before tj , ramping the interpolation parameters
uij and ujk over this time. To compute the actual q in this
region, we perform a third and final interpolation between
the computed values for qij and qjk.

For this blend region around qj , we compute the interpo-
lation parameters by ramping down u̇ij , ramping up u̇jk.

tij = tj − ti (10)
∆t = t− (tj − tb/2) (11)

üij = − 1

tijtb
(12)

u̇ij(t) =
1

tij
+ ∆tüij (13)

uij(t) =
tij − tb/2

tij
+

∆t

tij
+
üij
2

(∆t)
2 (14)

üjk =
1

tb (tk − tj)
(15)

u̇jk(t) = ∆tüjk (16)

ujk(t) =
üjk
2

(∆t)
2 (17)

where uij and ujk are the interpolation parameters from qi
to qj and from qj to qk, respectively, and tb is the blending
period around qj .

Then, we blend the two trajectories:

qij(t) = slerp (qi, qj ;uij(t)) (18)
qjk(t) = slerp (qj , qk;ujk(t)) (19)

q(t) = slerp (qij(t), qjk(t);uj(t)) (20)

Now, we return to computing the time derivitive of SLERP,
with the complication that the interpolation points in this
case vary over time. This will let us derive the interpolation
parameter for the blend region, uj(t), such that angular
velocity is continuous. We can more precisely write the
SLERP formula as:

q(t) = q1(t)
sin ((1 − u(t))θ(t))

sin θ(t)
+ q2(t)

sin (u(t)θ(t))

sin θ(t)

= q1(t)a(t) + q2(t)b(t) (21)

where u(t) and θ(t) are time varying functions, and a(t) and
b(t) are substituted variables for the coefficients of q1(t) and
q2(t).

Then, the time derivative is:
dq

dt
(t) = q̇1(t)a(t) + q1(t)ȧ(t) + q̇2(t)b(t) + q2(t)ḃ(t) (22)

The values of q̇1 and q̇2 can be computed from dq/du in
(3) and u̇. We differentiate to find ȧ(t) and ḃ(t), dropping
the parameter t for brevity.

ca = cos (θ (1 − u)) sa = sin (θ (1 − u))

cb = cos (θu) sb = sin (θu)

ȧ =
ca

(
θ̇(1 − u) − u̇θ

)
sin θ

− θ̇ cos (θ) sa

sin2 θ
(23)

ḃ =

(
θ̇u+ θu̇

)
cb

sin θ
− θ̇ cos (θ) sb

sin2 θ
(24)
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Fig. 4. SLERP u values over linear and blend regions. uij is the
interpolation parameter between points i and j, which ramps down during
the blend. uj is the interpolation parameter for the blend region around
j when ramps up, then down during the blend. ujk is the interpolation
parameter between points j and k, which ramps up during the blend.

From (23) and (24) we can compute uj(t) to ensure that
angular velocity is continuous. For this, we must ensure that
the angular velocity at the beginning of the blend equals the
angular velocity at the end the preceding linear segment and
that angular velocity at the end of the blend equals that at
the beginning of the following linear segment:

q̇j(tj − tb/2) = q̇ij(tj − tb/2) (25)
q̇j(tj + tb/2) = q̇jk(tj + tb/2) (26)

At the beginning of the blend segment around j where
t = tj − tb/2, we know uj = 0, so we can simplify the
coefficients of q̇j in (22) as follows:

q̇j(tj − tb/2) = q̇ij + qij ȧ+ qjk ḃj (27)

ȧj(tj − tb/2) = ḃj(tj − tb/2) =
u̇jθ

sin θ
(28)

Thus, if we have u̇j(tj − tb/2) = 0, then the coefficients
ȧ and ḃ will be zero and (25) will be satisfied. A similar
property holds at the end of the blend region, so we must
have u̇j(tj − tb/2) = u̇j(tj + tb/2) = 0. We satisfy
this property by computing uj based on a constant second
derivative:

üj =
4

t2b
(29)

uj(t) =

{
t ≤ tj 0.5üj (∆t)

2

t > tj 1 − 0.5üj (tj + tb/2 − t)
2 (30)

From (30), we compute uj(t) for (20) and u̇j for (2). Fig
4 plots values of uij , ujk and uj over the linear and blend
regions.

Now, we find θ̇. To simplify, we assume that q1(t) and
q2(t) are unit quaternions.

θ(t) = cos−1 (q1(t) · q2(t))

θ̇(t) = −q1(t) · q̇2(t) + q̇1(t) · q2(t)√
1 − (q1(t) · q2(t))

2
(31)
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Combining (22) - (31), we compute the quaternion deriva-
tive dq/dt, and with (4), we find the angular velocity ω in
the blend region.

V. GENERATING AND TRACKING TRAJECTORIES

Following the derivation in Sect. IV, we summarize gen-
erating trajectory parameters from a sequence of waypoints,
computing reference workspace velocities, and finding cor-
responding reference joint velocities.

A. Generation
Given a sequence of orientations qi, waypoint times ti, and

blend times tbi: (q0, t0, tb0), (q1, t1, tb1) . . . , (qn, tn, tbn),
1) Add virtual waypoints at q = q0 at time t0 + tb/2

and q = qn at tn − tb/2 to the trajectory to provide
blending for initial and final points.

2) For every triplet of orientations, qi, qj , and qk, compute
üij , üjk, and üj according to (12), (15), and (29).

B. Tracking
To track a generated trajectory, alternate between a se-

quence of blend and linear regions. Around each waypoint
qj from tj − tb/2 to tj + tb/2, blend orientations. From
tj + tb/2 to tk − tb/2, SLERP from qj to qk.

Note that there is no linear region between q0 and the
virtual waypoints at t0 + tb/2, nor between the virtual
waypoints at tn − tb/2 and qn.

Linear Regions: For the linear region between qi and qj :
1) u̇ij = 1

tj−ti
2) Compute uij(t) = (t− ti) u̇ij
3) Compute q(uij) according to (1)
4) Compute q̇(uij) according to (3) and (2)
5) Compute ω(t) according to (4)

Blend Regions: For the blend region between qi, qj , and qk:
1) Compute u̇ij , uij , u̇jk, ujk, u̇j , and uj according to

(13), (14), (16), and (17).
2) Compute qij = slerp (qi, qj ;uij) and qjk =

slerp (qj , qk;ujk)
3) Compute q̇ij q̇jk according to (3) and (2).
4) Compute q(uj) = slerp (qij , qjk;uj)
5) Compute q̇(uj) from (31), (23), (24), and (22).
6) Compute ω(t) according to (4)

C. Workspace Control
Now, we apply a singularity-robust Jacobian inverse

kinematics to obtain joint velocities from the generated
workspace trajectory [13]. To provide acceptable perfor-
mance near joint singularities, we compute the damped
pseudo-inverse of the Jacobian as follows:

J+ =

min(m,n)∑
i=0

si
max(si2, smin

2)
viu

T
i (32)

where J = USV T is the singular value decomposition of J
and smin is a selected constant for the minimum acceptable
singular value.3

3On the Schunk LWA4 in Fig. 1, a reasonable value for smin is .01.

Torso

Left LWA4Left SDH Right LWA4 Right SDH

Ctrl PCConsole

Fig. 6. Block Diagram of robot manipulator hardware components. The
control PC communicates with the servo controllers over several CAN buses.

We compute the damped-least squares solution for feed-
forward velocity and feedback-position control:

φ̇r = J+

([
ẋr
ωr

]
− kxe

)
= J+

([
ẋr
ωr

]
− kx

[
x− xr

ln (q ⊗ q∗r )

])
(33)

where e is the position error.
In addition, for redundant manipulators with more than six

degrees of freedom, we use the null-space projection to help
avoid joint limits by directing the joint positions towards a
nominal zero point.

φ̇r = J+

([
ẋr
ωr

]
− kx

[
x− xr

ln (q ⊗ q∗r )

])
−kφ(J+J−I)(φ−φ0)

(34)
where kx is the workspace position error gain, kφ is the
null-space projection gain, and φ0 is the nominal zero
configuration.

We then use joint-level velocity control to track the
reference joint velocities φ̇r.

VI. EXPERIMENTAL RESULTS

A. Simulation

We first demonstrate these trajectories on a kinematically
simulated Schunk LWA3 robot with 7 Degrees of Freedom
(DOF). Fig. 5 shows the workspace orientation and derivative
through a sequence of orientations. From this, we can see
that orientation is C1 continuous. Between each of the
waypoints, we have an accelerating segment, a constant-
velocity segment, and a decelerating segment.

B. Physical Implementation

We validate our trajectory generation approach on a
physical Schunk LWA4 arm with Schunk SDH hand for
a screwing task, Fig. 1. The LWA4 is a 7 DOF arm that
offers a shorter distance between wrist point and end-effector
than the LWA3. Fig. 6 gives an overview of the major
physical system components. Our real-time software runs on
Xeon E3-1270v2 PC under Linux 3.4.18-rt29 PREEMPT RT,
and is implemented as multiple operating system processes
communicating using the Ach interprocess communication
library [7]. Fig. 7 summarizes the real-time software com-
ponents.

We generate and execute a trajectory to screw together the
wooden pieces. Because of the SDH’s kinematic configura-
tion, it grasps the screw such that the screw axis is offset
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Fig. 5. Simulated trajectory through the following waypoints specified in XZY Euler Angles: (−π/2, 0, π), (−π/2, π/10, π), (−π/2,−π/10,−π),
(π,−π/10,−π), (π, 0, π). Interpolation is performed on the quaternion representation. (a) Workspace Angular Velocity. (b) Joint Position. (c) Joint
Velocity. (d)-(i) Via Orientations.
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Fig. 8. Physical Screwing Task. (a)-(e), trajectory waypoints. (f), the inserted screw.
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Fig. 7. Block diagram of real-time software components. Gray ovals
are user-space driver processes, green ovals are controller processes, and
rectangles are Ach channels.

from the last wrist axis. Thus, we cannot turn the screw by
rotating only the last joint but must instead consider the entire
arm. The provided waypoints to insert the screw are shown
in Fig. 8, and the generated trajectory in workspace and joint
space is plotted in Fig. 9. This trajectory aligns, inserts, and
turns the screw in one continuous, non-stop motion.

C. Computational Performance

This method is computationally efficient. The generation
phase to pre-compute parameters requires O(n) time, where
n is the number of waypoints. The tracking phase requires
O(1) time during each control cycle. Tracking does require
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Fig. 9. Plots of positions and velocities for physical screwing task. (a) Workspace orientation. (b) Workspace translation. (c) Workspace rotational velocity.
(d) Workspace translational velocity. (e) Joint positions. (f) Joint velocity

Linear Region .39 µs
Blend Region 1.3 µs

TABLE I
TIME TO COMPUTE REFERENCE PARAMETERS PER CONTROL CYCLE.

AVERAGE OF 10 MILLION EVALUATIONS ON AN INTEL XEON E5-1620.

evaluating a few transcendental functions during each control
cycle; however, for modern CPUs at typical real-time control
rates, e.g., one kilohertz, this is not a significant factor. Ta-
ble I shows evaluation times on the order of one microsecond
for a recent Intel CPU.

VII. CONCLUSION

We have presented a method for generating workspace tra-
jectories through a sequence of multiple waypoints, maintain-
ing constant axis of rotation between each pair of points. This
approach improves upon previous methods for workspace
trajectories by avoiding singularities, continuously transition-
ing through multiple waypoints, and maintaining a constant
axis of rotation between waypoints. This enables continuous
motion without stopping for axis-constrained tasks such as
screwing and rotating parts. We have demonstrated these
trajectories in simulation and validated the approach on a
physical manipulator by aligning and screwing together two
parts in one continuous motion.
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