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Abstract. Modern approaches for robot kinematics employ the product
of exponentials formulation, represented using homogeneous transforma-
tion matrices. Quaternions over dual numbers are an established alter-
native representation; however, their use presents certain challenges: the
dual quaternion exponential and logarithm contain a zero-angle singular-
ity, and many common operations are less efficient using dual quaternions
than with matrices. We present a new derivation of the dual quaternion
exponential and logarithm that removes the singularity, and we show an
implicit representation of dual quaternions offers analytical and empir-
ical efficiency advantages compared to both matrices and explicit dual
quaternions. Analytically, implicit dual quaternions are more compact
and require fewer arithmetic instructions for common operations, includ-
ing chaining and exponentials. Empirically, we demonstrate a 25%-40%
speedup to compute the forward kinematics of multiple robots. This work
offers a practical connection between dual quaternions and modern ex-
ponential coordinates, demonstrating that a quaternion-based approach
provides a more efficient alternative to matrices for robot kinematics.

1 Introduction

Efficient geometric computations are important for robot manipulation, 3D sim-
ulation, and other areas that must represent the physical world. The product of
exponentials formulation, represented as homogeneous transformation matrices,
has emerged as the conventional method for robot kinematics [2,14,16]. For pure
rotations, the unit quaternion has recently resurged in popularity, particularly
for applications in graphics and estimation where the efficient interpolation and
normalization of quaternions is especially useful. It is also possible to repre-
sent both rotation and translation by extending the ordinary unit quaternion
to quaternions over dual numbers [18,22]. Such dual quaternions retain the unit
quaternions’ advantages of compactness and efficient normalization; however,
they also present challenges. Common kinematics operations—constructing and
chaining transforms—require more arithmetic instructions using dual quater-
nions than the equivalent transformation matrix computation. Critically, the
dual quaternion exponential contains a small-angle singularity which must be
handled for numerical robustness. We address these challenges and present a
dual-quaternion-based representation with advantages for robot kinematics.
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We present a new derivation of the dual number quaternion exponential and
logarithm that removes the small-angle singularity, and we show that the im-
plicit representation of a dual quaternion is more computationally-efficient for
robot kinematics than homogeneous transformation matrices. The conventional
representation of exponential coordinates using the homogeneous transformation
matrix provides a baseline for comparison (see Sec. 3). We begin with the known
forms of the ordinary quaternion exponential and logarithm (see Sec. 4.1). Then,
based on dual number arithmetic and quaternion geometry, we derive the ex-
ponential and logarithm for the dual quaternions and rewrite factors to identify
Taylor series that remove the singularities (see Sec. 4.2). We extend this dual
quaternion exponential and logarithm to the implicit representation of a dual
quaternion as an ordinary (rotation) quaternion and a translation vector, which
is more compact and computationally efficient than explicit dual quaternions
(see Sec. 4.3). Next, we present the application of these quaternion forms to
robot kinematics, demonstrating a 25%-40% empirical performance gain over
transformation matrices. Finally, we discuss issues of equivalence and efficiency
between matrix and quaternion representations (see Sec. 6).

All the derived forms presented in this paper are available as open source
software. !

Quaternion-based forms present
both challenges and advantages. A
N A common challenge raised with quater-

= RN nions is the difficulty of men-
tally visualizing the four-dimensional
space of ordinary quaternions—or
‘ the eight-dimensional space of dual
1 quaternions—whereas vector and ma-
“’% ) | trix approaches have a direct, 3-
' dimensional interpretation. Still, the
. / planar projection of quaternions (see
So o Fig. 1) provides some insight into

' the relationship between quaternion
components and angles. More impor-

Fig.1. The quaternion-imaginary-plane, tffmtly, a growing body of WOI‘k.COH—
containing axes for the scalar w and vector tinues to demonstrate that ordinary
magnitude |v]. and dual quaternions offer computa-
tional advantages in a variety of do-

mains [11,15,20]. The results of this paper are in the same vein. We demonon-
strate a dual-quaternion-based approach for the product of exponentials that
offers computational advantages over matrices. We mitigate the challenge of vi-
sualizing quaternions by using the relations of Fig. 1 in an algebraic derivation.
A key technique in our derivation is to rewrite factors with singularities into
forms with well-defined Taylor series which we can use for evaluation near the
singularity. Grassia applies this idea to ordinary quaternions [8]. For example, the

-

v| = |A]sin ¢

! Software available at http://amino.dyalab.org
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ordinary quaternion exponential contains the factor Sig % which has a singularity

at 8 = 0. However, we can use a Taylor series to remove the singularity:

sin 6 1 1 1
Sl gt b i
0 6" 1307 “s0m0° T = m

sin 0

=1. (1)

Near the singularity, we need only the initial terms of the Taylor series to
evaluate the factor to within machine precision because the final terms will be
smaller than the precision we can represent. For (1), we have alternating positive
and negative terms of decreasing magnitude, so the error after evaluating the first
1 terms is no greater than the magnitude of term ¢ + 1. We need not evaluate
any additional terms with when this error is less than machine precision. For
example, when 6% is less than machine precision, we may can achieve minimum
possible numerical error using only the first two terms 1 — %92.

' We extend this Taylor. series c'onstruc— sinb=0— 10°+ Lo°+ ..
tion to the dual quaternions, which have Lo 1aa
similar—though more complicated—factors cosf=1—30"+ 576" +...

containing singularities. We use quaternion SRl =1 —10%+ 5500 + ...
trigonometry (see Fig. 1) to rewrite these 2o=1+102 4 L0t +

factors into forms that are defined in the l=cos0 _ 1 1g24 Lty
limit via Taylor series. Table 1 lists several
common Taylor series. Table 1. Taylor Series for § — 0
We use the following notation. Bold uppercase R denotes a matrix. Bold
lowercase v denotes a vector. An over-arrow ¢ denotes a length-three vector
over the basis units i, 7, k. An over-hat @ denotes a unit vector (Ju| = 1).
An over-tilde 7 denotes a dual number (7 = 7yeal + Nduai€). The lowercase
script A denotes an ordinary quaternion. The uppercase script § denotes a dual
quaternion (S = speal + Saual€). We abbreviate sin and cos with s and c.

2 Related Work

Brockett connected robot kinematics with Lie groups expressed as matrix ex-
ponentials [2]. This product of exponentials formulation has become the con-
ventional approach for robot kinematics [14,16]. Our work presents a practical
connection between such exponential coordinates and quaternion-based repre-
sentations, and we show that a quaternion-based representation can offer effi-
ciency advantages compared to matrix-based representations.

Quaternions provide an alternative to matrix-based geometric representa-
tions. Unit quaternions represent rotations [9] with four elements: a 3-element
vector and a scalar that together encode the rotational axis, and the sine and
cosine of the rotational angle. Though vector analysis became the preferred no-
tation in many areas [1,7], quaternions have seen renewed use in recent years as
a practical representation for rotation, interpolation, and estimation [8,13,15,20].
The computational advantages of quaternions in such applications suggest that
a quaternion-based approach could merit investigation in other areas typically
addressed using vector or matrix representations.
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Quaternions over dual numbers—the dual quaternion—can represent both
rotation and translation [22,23]. Selig presents a modern context for dual quater-
nions and more broadly Clifford algebras in relation to Lie algebras [18]. Yang
and Freudenstein applied dual quaternions to the analysis of spatial mecha-
nisms (closed chains) [27]. Several recent authors have applied dual quaternions
to robot kinematics [4,5,10,12,17,21,25]. Wang, et. al. compare dual quaternion
and homogeneous matrix approaches, showing that dual quaternions are often
more efficient [26]. We continue this application of dual quaternions to robot
kinematics by addressing issues of singularities and numerical robustness in the
dual quaternion exponential and logarithm.

Though the form of the dual quaternion exponential is well established [6,19],
there is, to our knowledge, no prior work that addresses the zero-angle singu-
larity in the dual quaternion exponential and logarithm, which is necessary to
practically use dual quaternions in the product of exponentials formulation. Han,
et. al. observe, though do not address, the zero-angle discontinuity [10]. Wang,
et. al. provide an approximation of the logarithm [25]. In this work, we present
new, exact derivations of the dual quaternion exponential and logarithm that
remove the zero-angle singularity, enabling the practical use of dual quaternions
as exponential coordinates. Furthermore, we show that implicitly representing a
dual quaternion as an ordinary quaternion and a translation vector is both more
compact and more computationally efficient for common kinematics operations
than either explicit dual quaternions or homogeneous transformation matrices.

3 Rotation and Transformation Matrix Maps

We briefly restate the key matrix operations for robot kinematics to compare
against the quaternion forms and illustrate the Taylor series construction.

3.1 Rotation Matrix

We define the rotation matrix exponential and logarithm using the rotation vec-

tor, i.e., the rotation axis scaled by the rotation angle, because separating the

axis and angle results in an undefined axis when the angle is zero and poor nu-

merical stability when attempting to construct the unit axis for small angles [8].
The rotation matrix exponential [14] is:

0 —w, wy

. 1— .
el =14 M[UJ] + C7C);|Ld|[w]g7 where [w]=|w, 0 —wy| . (2)
] wl —wy wy 0
Y T
We remove the singularity at |w| = 0 via the Taylor series in Table 1 for %IT)‘
1—cos|w]|
and o

The rotation matrix logarithm [14] is:

0 32 — 723 r r ra3 — 1
G = 55 d 713 — T30 , where 6 = cos™! ( 1t 22; 33 > . (3)
r21 — T'12
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We remove the singularity at € = 0 via the Taylor series in Table 1 for ﬁ.

3.2 Transformation Matrix:

The transformation matrix exponential [14] is:

sin|w|
- [w] 1—cos|w| 1-=or 2\ -
o () = [ (et g wr) o]
0 1
We remove the singularity at |w| = 0 via the Taylor series in Table 1 for
17|2)‘5‘2\w| and the following:

| snlel 2 2
o] |wl |w]

_— = - - — - “ e 5
w]? 6 120 T 5040 T (%)

The transformation matrix logarithm [14] is given by:

In Rv| InR "
01) T\ (1- 5+ 2l ) v ) -

We remove the singularity at |w| = 0 via the following Taylor series:

2sin|w| — |w| (L +cos|w|) 1 | |wf o

== T 7
2 (sin |w|) Jw|? 12 7 720 ' 30240 (™)

4 Ordinary, Dual, and Implicit Quaternion Maps

Now, we present the key contribution of this work: new, singularity free forms of
the dual quaternion exponential and logarithm and their corresponding forms for
the implicit, quaternion-translation representation. Our derivation starts with
the established ordinary quaterion exponential and logarithm (see Sec. 4.1).
Then, we derive the dual quaternion forms (see Sec. 4.2) by using the quaternion
trigonometry (see Fig. 1) to construct Taylor series that remove the singularities.
Finally, we derive the equivalent exponential and logarithm for the more compact
and efficient quaternion-translation representation (see Sec. 4.3).

4.1 Ordinary Quaternions

Ordinary quaternions extend complex numbers (22 = —1) to three units:

PPk —igk=—1. (8)
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A quaternion, therefore, has four elements: the real term (scalar) and the

coefficients of each quaternion unit Z, j, and k (vector). We use the following
notations for the quaternion elements:

h=xityj+zk+ w =v+w. (9)

The dot (+) and cross (x) products, though actually introduced as an alter-

native to quaternions [7], allow a compact definition of the quaternion multipli-
cation (®):

qRp=qo X Dv + quPv + PwGo + quwPw — Qo * P - (10)

The quaternion conjugate and rotation operation are:
B = —hy + fiy and Y = Y%y @ % @ % (11)

The quaternion exponential is:

Ut = v <<SIT ||U|> T+ cos |v|> : (12)
v

When |v| approaches zero, we can use the Taylor series for Sllnvl‘”‘ in Table 1.

To compute the logarithm, we first find the angle between the vector ¢ and
scalar w parts of the quaternion. Then the logarithm is as follows:

¢ = atan2 (|v|,w) and lnﬁ:%6+ln|ﬁ|. (13)

When |v| approaches zero, we handle the singularity in % by rewriting as
follows:

T s 62 | To* | 310°
ﬂzﬂ: 4] :Sin¢:1+F+ﬁ+l5120+"' (14)
o "l " sne 0 -

4.2 Dual Quaternion

Dual quaternions are a compact representation that offers useful analytic prop-
erties. We briefly review the use of dual quaternions for kinematics before in-
troducing our new derivations of the exponential and logarithm to handle the
small-angle singularity. For a more thorough overview of dual quaternions for
kinematics, please see [18].
Dual quaternions combine ordinary quaternions with the dual numbers, &,
defined as:
e?=0 and e#0. (15)

Practical Dual Quaternions 6
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A dual quaternion will thus have eight coefficients covering all combinations
of the quaternion elements, dual element, and scalars. We write a dual quaternion
as:

5:ﬁ+d5:ﬁmi+ﬁyj+ﬁzl%+ﬁw+(@i+@j+dzk+@>s. (16)

The Euclidean transformation consisting of rotation 4 and translation v’ cor-
responds to the following dual quaternion.

1
5:ﬁ+d€:ﬁ+§ﬁ®ﬁ€ and T=24d QHK". (17)

Multiplication of dual quaternions will chain successive transforms.

aSC _ ajb ® bSC — (aﬁb + aLbe) ® (bﬁc + bL{CE)
= by @ %y + (hip © ', + “dy © he) € . (18)

Rewriting (18) in terms of a transformation and a point yields the dual
quaternion form to transform a point. An equivalent derivation extends (11) to
the dual numbers.

s, =, @ (1 + pe) s = (24 +E® ") @K (19)

The Taylor series for functions of dual numbers yields a useful property: all
higher-order terms containing €2 cancel to zero.

" /// 0
f(r—i—de):f(r)—kfl(' f M—Ff M—F/

= f(r) +edf'(r ) : (20)
— 7
The dual number Taylor series (20) en- frde) = f(r) + Ed(f (r)
. . cos (r + de) = cosr — edsinr
ables evaluation of dual number functions o
; o sin (r + de) = sinr + ed cosr
using only the value and derivative of the “1(r 4 de) = tan 7 + 54
real function. We summarize several rele- eXp (r+de) = " +ee’d T
vant dual functions in Table 2. In(r +de) = Inr + e
Vrde = /1 + 6#

Singularity-Free Dual Quaternion Table 2. Dual numbers functions
Exponential To derive a suitable form of

the dual quaternion exponential, we begin by rewriting the ordinary quaternion
exponential (12) over dual numbers.

6= (b + &) + (8 + )2 + (hy + e)?
o5 _ e <51;¢ ((ﬁz + dye) i+ (hy + dye) j+ (hy + d.€) I%) —|—cos</3> (21)

Direct evaluation of (21) must contend with the singularity (zero denomina-

tor) in the factor Si’(})"b

. To handle the singularity, we will algebraically expand

Practical Dual Quaternions 7
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the dual arithmetic and rewrite factors based on quaternion trigonometry into

forms where we can find suitable Taylor series.
First, we expand the dual quaternion angle ¢.

&zVMa+@@Lu@+@@LH@+@@2

dy 4,
:,/ﬁ§+ﬁy2+ﬁ§+ﬁ“"+ﬁy%+ﬁ” e=¢+ Le (22)
NGEN B ¢
where ¢ is the same as the ordinary quaternion angle and v = ﬁ;, . Z,,
The dual sin and cos are then
cosp=c— T se and sing = s + Tee. (23)
¢ )
where s = sin ¢ and ¢ = cos ¢. i
snd and rearrange terms to find a

Next, we expand the dual sinc function
suitable Taylor series to handle the singularity at ¢ = 0:

%cos(d))e sin() . (COS(¢)¢_2 SH}@) c

sin ¢ B sin(¢) + B
6 ¢+ e ¢
2 4 1 2 4
:( _¢;+&)+...)+7(—3+§%—§40+..)e. (24)

Finally, we expand the original form of the exponential in (21):
- - c— > - S

S = (e* + dyefve ((5@,%0+<54,% ¢7&,7>e>
( ) ¢ ) ¢? ¢

e =

(25)

By applying the Taylor series in (24), we can stably evaluate (25) in the

neighborhood of ¢ = 0.

Singularity-Free Dual Quaternion Logarithm We derive the dual quater-
nion logarithm by expanding the ordinary form (13) with dual arithmetic.
(26)

ISH RSN

Ins == (h, + dye) +Inm

where ¢, 71, and 7 are the dual number forms of ¢, |f,|, and ||, (respectively)

from (13). The dual arithmetic expands as follows:

o= U+ o) + (B + ) + (B + e = [fu] + %fe = |fy] + nge,
and ¢ = tan et e

- hed
m:|ﬁ|+W€:|ﬁ|+md€,
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Further expanding ¢ via the dual Taylor series for tan~! (see Table 2):

& = atan2 (||, fw) + <W> e=o¢+ <W> e. (28)

Next, we consider the dual % For this step we take guidance from the quater-
nion trigonometry (see Fig. 1) to rewrite factors as trigonometric functions for
which we can find well-defined Taylor series. Specifically, we know that:

¢ = atan2 (i, |hy|) and % = cos ¢ and ||ﬁ;||

—sing. (29)

We expand the dual arithmetic and reorder %:

= ot (ﬁwnd\;\ljv%) £ _ ¢ n < hwna  ¢na  dy ) .

ol +nae TRl \JRJIAE (& AP

ISH RS

(30)

Equation (30) contains a singularity where |4| = 0. We evaluate the term i f |

as in (14). We rewrite the larger term in the dual coefficient as follows:

fumna _qsnd:W( b _¢>:v<ﬁwﬁ|2_¢ﬁ|3>_ (51)
ol |6 |hol? P 167 1612 1A \ AP A

where v = ﬁv . ZU Then, we substitute the trigonometric functions and produce
the corresponding Taylor series:

v [ cos¢ ) oy (2 1, 1T,
'€|3<Sin2¢_sin3¢>_ |ﬁ3( 3 5¢ 420¢ —I—) (32)

Now that we have identified Taylor series to handle the singularities, we have
the full dual quaternion logarithm:

¢ - . hed
Ins=—#, +1In|a| + + —d, +
| || || |42
4
foy — 2 a2 _2_ o _ -+
where «a = e |4 = ( S ) (33)

h)> |A]

4.3 Quaternion-Translations as Implicit Dual Quaternions

Just as we may represent transformations with a rotation matrix and trans-
lation vector—i.e., the homogeneous transformation matrix—we can also rep-
resent transformations with a rotation quaternion and translation vector. The

Practical Dual Quaternions 9
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quaternion-translation form offers computational advantages: it consists of only
seven elements and chaining requires fewer operations than both the dual quater-
nion and matrix forms. However, because chaining is no longer a multiplication,
as with dual quaternions or matrices, analysis of quaternion-translation kine-
matics is more complicated, particularly for differential cases involving finding
derivatives or in integrating transforms. We address the analytic challenge of the
quaternion-translation form by reinterpreting quaternion-translations as implicit
dual quaternions, or alternately stated, by adopting an in-memory representation
of dual quaternions as a quaternion-translation. The implicit dual quaternion
combines the analytic convenience of dual quaternions and the computational
efficiency the quaternion-translation representation.

The quaternion-translation form stores separately the rotation quaterion A
and translation vector ¥, eliminating the coupling of rotation and translation in
the dual part of the dual quaternion:

1 - rewrite h

To transform a point, we first apply the rotation, then add the translation—
the same operations performed by the homogenous transformation matrix:

Y = Y%y @%@ ()" + Ty (35)

Implicit Exponential We derive the exponential for the implicit dual qutera-
tion starting with (25), extracting the translation, and finally identifying Taylor
series.

First, we simplify (25) to the pure case, i.e., zero scalar part:

exp(di—i—ﬁe)—(S(IJ'—I—c)—i—(Sﬁ—i-c_;mﬂ 57)(—:
~\¢ o e

where v=d-7 and ¢=VI-& (36)
Next, we extract the translation from the dual part.
=0+ c)
exp (J + ve) = [E] = R (_ib . * (37)
v Z(éV—Fvaw—év)@(éw—i-c)

In (37), we may evaluate the rotation part £ as in the ordinary quaternion
case. For the translation part v, we first algebraically simplify:

c— = *
7=2 (517+ R . 57) ® (Sw + c) (38)

¢ ¢? ¢ ¢
_ s 2
:2<_§;ﬁxw+c¢sﬁ+ W7¢3> (39)

Practical Dual Quaternions 10
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Then, we simplify the trigonometric factors, and we identify the common

subexpressions.
9 B 9 2 — 2
a:;(@w) ><z7>+c;17+< ¢2¢>*ydf (40)

Using the Taylor series from Table 1 and for the new factor, we obtain:

= 2

exp (W + ve) = [/_i.] <éoj i C)

7 %(ﬁvxﬁ)+c%ﬁ+(2;2¢)(a}.ﬁ)&
2s
¢2 ¢4 2_£$ 4 4¢2 8¢4
—-Z d — - =7 A1
qs ettt ad —m =3 -ty | W

Implicit Logarithm We derive the implicit logarithm starting with (33), sub-
stituting the translation vector, and finally identifying suitable Taylor series.
We begin with the dual quaternion logarithm (33):

In [g,] =& +ve=1n (ﬁ + %6@ ﬁ€> (42)

The real part & of the implicit logarithm is identical to the dual quaternion
case (33). We assume a unit quaternion |4| = 1, so the scalar part of the logarithm

is zero.
o f B _'_iﬂ B ¢ -
(1“ [6])ml“”‘ ™ = Sng™ (43)

For the dual part 7, we expand (33), simplifying for the unit case |#| = 1:

. (4 P
1 — =V= - ) i
<“[])d 7=la- )k w‘“”M

where d, = fv X oy + — ﬁw and 4y, = —

-

Sk ()

Substituting for dual part 4 in terms of translation v, we simplify to:

S, e -
17_—117-@,( )ﬁu+ﬁ”"¢*+¢(ﬁx ﬁv) (45)
52 2

Noting that A, = cos¢ and & =

- ¢ﬁ“’ we further simplify to:

@) ()

Practical Dual Quaternions 11
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Finally, we identify the Taylor series to obtain the implicit logarithm as
follows:

e (47)

5 Application to Kinematics

Both matrix and quaterion representations may be used to compute the forward
kinematics of robot manipulators. We compare the different representations and
show that the quaternion-translation offers the best forward kinematics perfor-
mance. Mathematically, quaternion-translations require the fewest arithmetic
operations, and in our empirical evaluation, quaternion-translations require the
shortest execution time.

Table 3 and Table 4 compare operations for quaternion and matrix forms.

Table 5 summarizes the construction of transformations for single degree-
of-freedom joints using matrix and quaternion forms. We use the known axis
of joints to simplify construction over the general-case exponential. The result
shows that quaternion-translations require the fewest arithmetic operations.

Fig. 2 presents an empirical comparison of forward kinematics performance
in terms of speedup over the baseline matrix representation. The quaternion-
translation shows the best empirical performance, consistent with the operation
counts in Table 3, Table 4, and Table 5. Additionally, the explicit dual quater-
nion also offers slightly better performance than matrices in our tests. Even
though matrices require fewer arithmetic operations to construct and chain, sev-
eral other advantages of the dual quaternions lead to the improved performance.
Dual quaternions are more compact than matrices, which reduces necessary data
shuffling, and quaternions require fewer operations for the exponential and ro-
tation chaining, which are heavily used in robots with many revolute frames.

6 Discussion

We often have the choice of a matrix or quaternion form for any particular ap-
plication; both will produce a mathematically-equivalent result, but the compu-
tational efficiency will differ. For example, interpolation is commonly regarded
as a key application area for quaternions; however, we can achieve the same
result—at greater computational cost—using rotation matrices. Spherical lin-
ear interpolation (SLERP) [20] interpolates from an initial to final orientation

Practical Dual Quaternions 12
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Chain |Rot./Tf.|] Normalize

Representation|Storage| Mul. Add|Mul. Add|Mul. Add Other

465 Rotation Matriz| 9 27 18| 9 6 | 27 15 sqrt(3)
o] Quaternion| 4 16 12|15 15| 8 3  sqrt

Transformation Matriz| 12 36 27| 9 9 |27 15 sqrt(3)
;‘ Dual Quaternion 8 48 40| 28 28 | 12 3  sqrt
Quaternion-Translation 7 31 30| 15 18| 8 3 sqrt

Table 3. Requirements for storage, chaining, and point transformation. Quaternion-
based representations are more compact than matrices. Ordinary quaternions and
quaternion-translations are most efficient for chaining rotations and transformations,
respectively. Matrices are most efficient for rotating and transforming points.

Exponential Logarithm
Representation| Mul. Add Other Mul. Add Other
Rot. Matriz| 17 15 sqrt, sincos 5 7 sqrt, atan2
I Quaternion| 9 2 sqrt, sincos, exp| 8 3 sqrt(2), atan2, In
= Unit Q.| 7 2 sqrt, sincos 7 2 sqrt, atan2
Tf. Matriz| 39 34 sqrt, sincos 31 32 sqrt, atan2
o Dual Quat.| 31 12 sqrt, sincos, exp| 22 11 sqrt(2), atan2, In
B Unit Dual Q.| 19 8 sqrt, sincos 18 9 sqrt, atan2
Quat.-Trans.| 28 15 sqrt, sincos 28 16 sqrt, atan2

Table 4. Exponential and Logarithm Operation Counts. Ordinary and dual quater-
nions are more efficient than their matrix equivalents. The quaternion-translation costs
are between the matrix and dual-quaternion.

l [ Form [Mul. Add Other‘ T
Bu]
Q Tf. Matriz { 12 13 sincos
=1 -
'§ Dual Quat. et +3 e% 19 12 sincos
Q 04
K~ Quat.-Trans. [ei ] 3 0 sincos
U
o Tf. Matriz R 3 0 -
= 01 ‘,\éz
g Dual Quat.| Ai+¢(2®hf)e | 4 0 - e TR ——— =
.8 P ¢
gl h 2
A Quat.-Trans. lii 3 0 -
0 ~— kO —
Tf. Matriz { ka 9} 15 13 sincos| ,,, )
= 0 1 222“
% Dual Quat.|e3® + 6 Hge Sig| 23 14 sincos = C:é’—P
i p
e 7
Quat.-Trans. [ ] 6 0 sincos|

Table 5. Single degree—of—freedom joint transforms and operation counts.

quaternion-translation representation is most efficient to construct.

Practical Dual Quaternions
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Frame Counts

’Robot

Fized Revolute
1
trtcctreceeeeeeeeey Baxter| 73 15
Baxter 1.13 omiol 7 6
i Jaco 7 12

L\.L\.L\.I.\.LLI.L\.L\.L\.I.
LLLLLLLLLLLLLLLLLLL

I:] 1.26

SEREERERNE @D Tf. Matrix
T Dl Geett,

Jaco ':’;5;5;555;5;;5;5;5553 1:351 0 -Quat.-Trans.

Fig. 2. Forward kinematics speedup (higher is better), demonstrating a 25%-40% per-
formance improvement using quaternion forms. We compare the execution time to
compute the forward kinematics for the Rethink Baxter, Universal Robots URI10,
and Kinova Jaco manipulators using transformation matrices, dual quaternions, and
quaternion-translations. The results are shown as speedup (M) over the transfor-
mation matrix case. The tests were conducted on an Intel® Xeon E3-1275 v6 using
the kinematics implementations in the Amino (http://amino.dyalab.org) library.

with constant rotational axis and linearly-varying angle. The algebraic form of
SLERP [3] has a direct matrix equivalent:

(1) = A(0) @ exp (71n ((£(0))" @ A(1))) (48)
R(r) = R(0) exp (T In ((R(O))—1 R(1))) (49)

where £(0), R(0) is the initial orientation and £(1), R(1) is the final orientation.
Both (48) and (49) equivalently interpolate orientation. However, the quaternion
form (48) is more efficient to compute than the matrix form, and the more
commonly used geometric simplification of (48) is even more efficient [20].

Similarly, ordinary and dual quaternions provide computational advantages
for the blending or averaging of rotations and transformations [11,15], which
was described by Wahba [24] as optimal rotation based on a set of weighted
observations.

Generally, the matrix and quaternion representations of rotation and Eu-
clidean transformation share group structure. Just as the rotation and transfor-
mation matrices form Lie groups with associated Lie algebras based on the expo-
nential, so too do the ordinary and dual quaternions form Lie groups and associ-
ated algebras. We can map every quaternion representation to matrix equivalent.
Specifically, there is a surjective homomorphism (double-cover) from the ordi-
nary unit quaternions to the special orthogonal group SO(3) of rotation matrices.
Similarly, we have a surjective homomorphism from the dual unit quaternions
to the special Euclidean group SE(3) of homogeneous transformation matrices.

The results we have presented continue the broader developments of meth-
ods based on ordinary and dual quaternions which offer computational advan-
tages over their matrix counterparts. The quaternion methods we have presented
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achieve mathematically-equivalent results, but are more compact and efficient,
than the matrices.

7 Conclusion

We have presented new derivations of the dual quaternion exponential and log-
arithm which handle the small-angle singularity and enable the use of dual
quaternions within the product of exponentials formulation of robot kinemat-
ics. By extending our singularity-robust exponential and logarithm to the im-
plicit representation of dual quaternions as an ordinary quaternion and transla-
tion vector, we demonstrate a 25%-40% performance improvement in kinematics
computation over the conventional homogeneous transformation matrices. Our
implementation is available as open source code?. These results show that dual
quaternion representations provide the same capabilities as transformation ma-
trices and offer computational advantages which may be especially useful for
resource-constrained systems.

Even though matrices are a widely-used representation for Euclidean trans-
formations, the quaternion forms are both more compact and—for most cases—
require fewer arithmetic operations. In the one case where matrices have an ef-
ficiency advantage—transforming large numbers of points—it may still be more
efficient to chain transformations via quaternions and then convert the final
transform to a matrix to apply to the point set. We hope these derivations of
singularity-free exponentials and logarithms for the quaternion forms of trans-
formations will enable widespread use of these more efficient representations.
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