
Towards General Infeasibility Proofs in Motion Planning∗

Sihui Li† Neil T. Dantam†

Abstract— We present a general approach for construct-
ing proofs of motion planning infeasibility. Effective high-
dimensional motion planners, such as sampling-based methods,
are limited to probabilistic completeness, so when no plan
exists, these planners either do not terminate or can only
run until a timeout. We address this completeness challenge
by augmenting a sampling-based planner with a method to
create an infeasibility proof in conjunction with building the
search tree. An infeasibility proof is a closed polytope that
separates the start and goal into disconnected components of
the free configuration space. We identify possible facets of the
polytope via a nonlinear optimization procedure using sampled
points in the non-free configuration space. We identify the set
of facets forming the separating polytope via a linear constraint
satisfaction problem. This proof construction is valid for general
(i.e., non-Cartesian) configuration spaces. We demonstrate this
approach on the low-dimensional Jaco manipulator and discuss
engineering approaches to scale to higher dimensional spaces.

I. INTRODUCTION

Motion planning is a well-studied topic with many appli-
cations. A continuing challenge is obtaining complete solu-
tions to high-dimensional motion planning problems. Some
complete or resolution complete methods have been devel-
oped using approaches such as cell decomposition [1], [2];
however, cell decomposition presents scalability challenges
in higher dimensions. Widely used sampling based motion
planning [3], [4] are only probabilistic complete, meaning if
a plan exists they will find it in the limit (given enough time),
but if no plan exists, they can run forever (or until a timeout).
Numerous higher-level planning problems [5], [6], [7] would
benefit from the ability to determine whether or not a motion
planning problem is feasible—for example, can we reach a
desired object or must we first remove an obstacle occluding
the motion—and significant research effort has been devoted
to working around this challenging issue [8], [9], [10], [11].

We propose a general method to construct motion planning
infeasibility proofs based on sampling, optimization, and
constraint-solving. We prove infeasibility by constructing
a polytope whose facets are in the obstacle region of the
configuration space and which separates the motion plan-
ning start and goal into separate components of the free
configuration space. We generate candidate polytope facets
in conjunction with a sampling-based planning approach by
formulating and solving a nonlinear optimization problem
for sampled, non-free points to fill the non-free space and
separate the start and goal. We identify the set of facets that
form the separating polytope by formulating and solving a
linear constraint satisfaction problem that ensures the facets

∗ This work supported in part by NSF grant IIS-1849348.
† Department of Computer Science, Colorado School of Mines, USA.

li@mymail.mines.edu, ndantam@mines.edu.

(a) A path exists (b) No path exists

(c) Separating configuration space polytope

Fig. 1: Examples of motion planning problems and an
infeasibility proof. The goal is to reach the blue object at
the back of the shelf. A path exists in (a) but not in (b).
Our approach will generate the feasible plan for (a). For (b),
we generate a proof of infeasibility in (c): a configuration
space polytope that encloses the goal and excludes the start
configurations.

form a closed polytope and this polytope separates the start
and goal. The result of this approach is either a motion plan,
when one exists, or an infeasibily proof in the form of the
separating polytope when no plan exists. We demonstrate our
approach on the manipulator in Figure 1.

Though this approach offers a general framework to con-
struct infeasibility proofs for robot manipulators, challenges
remain to practically scale to high-dimensional manipulators.
Fortunately, the two key subroutines we employ—nonlinear
optimization and linear constraint satisfaction—have both
proven highly effective for solving combinatorially chal-
lenging planning problems [12], [13], [14], [15]. Thus, we
anticipate that further engineering of the optimization and
constraint formulation will enable this framework to provide
practical infeasibility results in high-dimension. We discuss
several of these engineering approaches in section V.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6704

II. RELATED WORK

Sampling-based motion planning has offered a practi-
cal and efficient approach to find motion plans in high-
dimensional space [16], [4], [17], [18], [19]. However, these
approaches are only probabilistically-complete and thus can-
not identify cases when motion planning is infeasible. Our
work directly addresses the challenge of proving motion
planning infeasibility.

Some prior work has addressed special cases to prove
path non-existence. Several approaches provide infeasibility
for single, rigid bodies. [20] proves disconnection for a
rigid body attempting to pass through gates. [21] proves
path non-existence using alpha shapes in collision space.
By constructing disconnected sets of 3-simplices in free
configuration space from the exterior of the alpha shapes,
if the start point and goal point are in different simplex
sets, it proves no collision free path exists. In this work,
scaling to higher dimensions depends on high dimensional
α-shapes, which is still an open research question. [1]
combines cell decomposition with a sampling based method
to take advantage of both approaches. [2] identifies path
non-existence by decomposing the configuration space into
small rectangular cells and checking if a path exists entirely
in collision-free cells. These methods are also only applied
to 3-DOF robots because of the cost of decomposing the
entire configuration space. [22] relates path non-existence
for single, rigid objects in 2D or 3D workspace to the
problem of caging. An approximation of the obstacle region
is constructed to check whether an objects is caged, which
proves path non-existence. [23] solves the motion planning
problem where the workspace obstacles are polyhedral. They
decompose the workspace into a set of polytopes and then
setup a linear program to determine the feasibility of sub-
plans when transitioning from one polytope to another.

Some other works focus on developing complete mo-
tion planning methods. [24] integrates PRMs (Probabilistic
Roadmaps) with complete planning for discs moving in the
plane. [25] constructs a road map based on star-shapedness
which can terminate early when a feasible path is impossible.
These methods decompose the search space, which may scale
poorly. In contrast, our approach depends on filling only
enough of the obstacle region to separate the start and the
goal.

Other works have addressed problems related to motion
planning infeasibility. [9] offers an asymptotically optimal
algorithm to remove the minimum constraints (i.e., obstacles)
to ensure that the motion planning problem is feasible. [26]
provides a probability bounds on finding an optimal motion
planning solution. Some approaches for task and motion
planning (TMP) have developed approximate or heuristic
estimates of motion planning feasibility [10], [8], [27].
Compared to these works, we directly address the challenge
of proving that a particular motion planning problem is
infeasible.

III. ALGORITHM

A. Problem Description

We address the problem of proving motion planning
infeasibility. A motion planning problem consists of a con-
figuration space C of dimension n, a start configuration qstart

and a goal configuration qgoal. The configuration space C is
the union of the disjoint obstacle region Cobs and free space
Cfree. Both qstart and qgoal are in Cfree. When a feasible
plan exists, our approach will produce a plan σ such that
σ[0, 1] ∈ Cfree, σ[0] = qstart, σ[1] = qgoal. When there is
no feasible plan, our approach will produce a proof of such.

B. Algorithm Overview

The algorithm generates a proof that the start and goal
are in disconnected components of Cfree. The proof has two
requirements: (1) a closed polytope whose facets are entirely
within the Cobs and (2) qstart and qgoal are not both inside
or both outside the polytope. In other words, the polytope
separates the start and goal into separate components of Cfree.

We look for the separating polytope in conjunction
with building a search tree in a sampling-based planner—
specifically, in conjunction with RRT-Connect [17], though
other sampling-based methods would also be applicable. The
algorithm has two broad steps.

1) Generate a collision volume graph (CVG): Each time
a configuration is sampled in the Cobs, we generate a
new collision ball and add it to the CVG. The collision
balls represent a configuration space volume contained
entirely in Cobs. Within each ball, we identify n points,
which provide a candidate facet for the separating
polytope in the n dimensional space.

2) Construct the polytope: Given the CVG, we define
a linear constraint satisfaction problem (LCSP) to
identify the separating polytope. The constraints ensure
that the polytope is closed and that it separates the start
and goal. A solution to this LCSP proves that the start
and goal are disconnected.

C. Construct the Collision Volume Graph (CVG)

Within the sampling-based planner, we use sampled con-
figurations in the obstacle region Cobs to grow the CVG
according to algorithm 1. We construct new balls based on
two requirements: (1) fill as much of Cobs as possible and
(2) intersect with the existing balls so that we can close
the separating polytope. The idea of growing volumes in
configuration space comes from [19].

Every vertex of the CVG is a ball. The vertex has four
fields, the ball center, the radius, a set of n points in ball, and
n sets of intersecting balls. The n points in the ball define a
candidate facet of the separating polytope. The intersecting
balls contain facets sharing a hyper-edge with the facet in
the current ball. In n dimension, there are n different hyper-
edges (choose n− 1 from n) for each ball. If a hyper-edge
of the current ball does not have an intersecting ball, we call
this edge an open edge. If a ball has open edges, we call this
ball an open ball.

6705

Theorem 1: A polytope in Rn space is closed if and only
if every facet of the polytope has an adjoining facet on each
of its hyper-edges.

Proof: We prove by contradiction. If there exists one
facet of a polytope with no adjoining facets on one of its
edges, then the facet’s inside and outside are connectable
around this open edge. Since the inside and the outside of
this polytope are connected. The polytope is not closed.

We use this requirement for closed polytopes to guide
growth of the CVG in algorithm 1. We use a sample point
to construct a collision ball only if it is in Cobs (line 1). If
it is the first point sampled in the CVG, the algorithm finds
an optimal start ball (line 2-5). The process of finding the
optimal start impacts efficiency. A start ball that is too small
will increase the number of balls and corresponding run time
needed to form the polytope. We find an optimal start ball via
a nonlinear optimization problem to maximize penetration
depth (the distance to the nearest point on obstacle region
boundary).

If the CVG is not empty, the algorithm first finds the ball
in the CVG that is closest to the sampled point. Starting from
the closest ball, we search for the first open ball and open
edge (line 6-7). The new ball must include all points of the
open edge. After finding an open ball/edge, there are three
possible ways to generate new balls. The highest priority is
to fill holes (line 8-11). A hole is a set of n points. Each
of its n − 1 points combinations is a hyper-edge of some
balls, but the n points do not belong to any ball. If we find
a hole containing all the edge points, we can create a new
ball using the n points. After a hole ball is created, it needs
to check all possible edge connections before returning.

If a hole cannot be found, we generate a new ball (line
12). To find the optimal ball center, we solve the following
non-linear optimization problem:

min
cnew,rnew

dist(cnew, line(pemean, pc))− C ∗ rnew

s.t. dist(pei, cnew) < rnew, i = 1, 2, . . . , n− 1

penetration-dist(cnew) > rnew

where cnew and rnew are the new ball’s center and radius,
pei are the edge points of the open edge, pemean is the mean
of edge points and pc is the sampled point in collision. The
first constraint ensures that all the edge points are in the new
ball. The second constraint ensures the new ball radius is not
larger than its penetration depth, thus the new ball is entirely
in collision. The goal is to minimize the distance from the
new ball center to the line connecting pemean and pc, so that
the new ball can grow onto the sampled direction as much
as possible. At the same time, we want to maximize rnew.
The constant C captures how much we want to prioritize
growing larger balls.

After the new ball is generated, the ball contains n − 1
points. There are two ways to add the last point. If there
are existing points inside the new ball, use the closest one
and check for all possible edge connections (line 13-18).
Otherwise, generate a new point inside the ball (line 19).
The new point generation uses the penetration vector (the

vector connecting a point in collision and the closest point
on the collision boundary). The new point needs to make the
facet in the ball as perpendicular to the penetration vector
as possible and being as far away to the existing points as
possible. The final steps are to add edges between the new
ball and the open ball, and add the new ball to the CVG (line
20-23).

Algorithm 1: Grow-Collision-Graph (pc, Gc)
Result: A collision ball graph

1 if pc 6∈ Cobs then return;
2 if Gc is empty then
3 vnew.c, vnew.r ← find-optimal-start-ball(pc);
4 Gc.add-node(vnew);
5 return;

6 vclosest ← find-closest-ball(Gc, pc);
7 vopen ← find-open-ball(vclosest, Gc);
8 fill-holes(vopen, Gc);
9 if a hole is filled then

10 check-edge-connection(Gc);
11 return;

12 vnew.c, vnew.r find-new-ball(pc, vopen.c);
13 for v in Gc do
14 pin.add(intersection-points(v, vnew));

15 if ‖pin‖ ≥ 1 then
16 pnew ← find-closest-intersection-point(pin, pc);
17 check-edge-connection(Gc);
18 else
19 pnew ← generate-new-points(vnew)

20 vnew.add-point(pnew);
21 vnew.add-edge(vclose);
22 vclose.add-edge(vnew);
23 Gc.add-node(vnew);

D. Configuration-space penetration depth

The collision balls represent configuration-space collision
volumes; however, existing collision detection approaches
can only help us identify collision information such as
penetration depth in the Cartesian workspace [28]. To gen-
erate the collision balls, we need penetrations depths and
vectors in configuration space. We define the workspace
to configuration space collision relationship as a nonlinear
optimization problem to minimize the distance between the
point in collision and the collision boundary point,

min
q

dist(qc, q)

s.t. ssd(~xm(q)− ~xo) = 0 , (1)

where qc is the configuration in collision, q is the collision
boundary configuration we want to find, ~xm is Cartesian
point of maximum penetration on the robot, ~x0 is the
Cartesian boundary point on the obstacle. The optimization
goal is the shortest configuration space distance, subject to
the sum of squared distance (ssd) between the point on the

6706

robot and the point on the obstacle being zero. We use a
local search to solve this optimization problem.

E. Constructing a closed polytope

The first step of constructing the separating polytope is
ensuring the selected facets form a closed polytope. Accord-
ing to Theorem 1, each hyper-edge of each facet must be
adjoined by another facet. For the CVG, we can thus say
that for each ball bi, the polytope must also contain one ball
from each of bi’s n sets of intersection balls,

bi =⇒

bi11 + bi12 + . . .+ bi
1ni

1
= 1

. . .

bij1 + bij2 + . . .+ bi
jni

j
= 1

. . .

bin1 + bin2 + . . .+ binni
n
= 1

, (2)

where bi indicates a ball is used to form the polytope and
bijk indicates that a ball intersecting bi is used to form the
polytope. bij1, bij2, ..., bi

jni
j

are the jth intersection set of ith

ball. nij is the number of balls in the jth intersection set.
We rewrite (2) as linear inequality constraints. For each

intersection set we have,

(1− bi) + (bij1 + bij2 + . . .+ bijni
j
) > 0 (3)

and
bij1 + bij2 + . . .+ bijni

j
≤ 1 + (1− bi)m, (4)

where m is the number of balls.
Equation (3) ensures that if bi is chosen, at least one ball

must be chosen from each of its intersection set. Equation (4)
ensures that if bi is chosen, then the total number of balls
is less than or equal to 1. These two inequalities together
ensure one and only one ball from each intersection set. At
the same time, if bi is 0, there is no requirement to include
balls from the intersection sets.

In addition, we need at least n+1 balls to form a polytope,
which gives us:

b1 + b2 + . . .+ bm ≥ n+ 1 . (5)

There are 2n inequalities for each ball. The total number
of inequalities is 2nm.

F. Separating the start and goal

Next, we ensure that the polytope separates the start and
goal configurations by applying the Ray casting algorithm
[29]. We find the line segment between the start and goal
and count the intersections between the line segment and the
polytope facets. If there is an odd number of intersections,
one point must be inside the polytope and the other outside.
Thus, we know that the polytope separates the start and goal.

Each polytope facet lies in a hyperplane in Rn,

a1x1 + a2x2 + . . .+ anxn = 1 . (6)

The point set in a ball bi is pi1, pi2, . . . , p
i
n, and each point

is an n vector, pij = [pij1, p
i
j2, . . . , p

i
jn]

T . We find the
hyperplane from the points:

(ai1p
i
j1 + ai2p

i
j2 + . . .+ ainp

i
jn) = 1, j = 1, . . . , n , (7)

where ai1, . . . , a
i
n are the parameters for the hyperplane in

the ith ball.
In n dimension, the line connecting qstart and qgoal is,

x1 − q1
goal

q1
start − q1

goal

=
x2 − q2

goal

q2
start − q2

goal

= . . . =
xn − qn

goal

qn
start − qn

goal

,

(8)
with qstart = [q1

start, q
2
start, . . . , q

n
start]

T and qgoal =
[q1

goal, q
2
goal, . . . , q

n
goal]

T . The line definition gives us n− 1
equations, together with the hyperplane equation, we have
a total of n equations to solve for the intersection point
xi = [x1i , . . . , x

n
i] between the line and the hyperplane in

the ith ball.
First, we determine whether the intersection between the

line and hyperplane lies on the segment between qstart and
qgoal:

xi − qstart = li
qgoal − qstart

‖qgoal − qstart‖
li < ‖qgoal − qstart‖
li > 0 . (9)

Second, we ensure the intersection point lies within the
facet bounds, i.e., which is the area enclosed by points used
to define the hyperplane (i.e., the ball’s point set becomes the
facet’s vertices). Each hyperplane is formed by n points. On
the hyperplane, the points can be considered as points in n−1
dimensional space. By reducing one dimension, the problem
of a point inside the hyperplane area in n dimensional space
can be converted to the problem of a point inside a polytope
in n− 1 dimensional space. Since we have n points on the
hyperplane, we have n points in the n−1 dimensional space,
which form a simplex. To determine if a point is inside a
simplex, we apply Carathéodory’s theorem [30] and calculate
Barycentric coordinates. A point p in n − 1 dimension is
inside a n-1-simplex formed by n points [v1, v2, . . . , vn] if
all of its Barycentric coordinates are positive and the sum of
the coordinates is less than or equal to 1. We calculate the
Barycentric coordinates can by,

λ = T−1(p− vn) , (10)

where T is ,

T = [v1 − vn, . . . , vn−1 − vn]T , (11)

and the Barycentric coordinates are,

λ = (λ1, . . . , λn−1),

λn = 1−
n−1∑
i=1

λi .
(12)

Point p is inside the simplex if the Barycentric coordinates
satisfy,

λi ≥ 0, i = 1, . . . , n . (13)

6707

Applying this result to our case, we have point set pi1,
pi2, . . . , p

i
n in n dimension for ball bi. We use the Gram–

Schmidt procedure on [pi1 − pin, pi2 − pin, . . . , pin−1 − pin] to
give a n − 1 dimension orthogonal coordinate system. We
represent the intersection point in this new coordinate, then
calculate the Barycentric coordinates.

If both (9) and (13) are satisfied, then the ball’s facet is
intersected by the line between the start and goal. We call
such balls essential balls, denoted by Ei. We can always
check whether a ball is essential when we construct the CVG,
since we always know balls’ point sets.

Given a polytope, we must also ensure that there are an
odd numbers of intersections according to the Ray casting
algorithm, i.e., an odd number of cases where both bi and
Ei are 1. This requirement yields the constraint,

b1E1 + b2E2 + . . .+ bmEm = 2r + 1 , (14)

where r is a non-negative integer. Combining (14) with (3),
(4), and (5) yields the complete LCSP. Since Ei is known
for each ball in the CVG, the variables we must solve in
this problem are all the bis and r. A solution to this LCSP
defines the separating polytope and provides a proof that no
feasible motion plan exists.

G. Two Simple Examples
We illustrate the approach using two simple examples in

2D and 3D.
Figure 2a shows a 2D disconnection proof. The green line

connects the start and goal point. The space in between the
yellow circles is in collision. In 2D, the balls are circles,
facets are lines inside a ball, and hyper-edges are points.
Ball 0 is first added to the CVG. Before any more balls are
added, both hyper-edges (points in 2D) of ball 0 are open.
Ball 1 is grown onto one side of ball 0’s open edges. Each
time a point is added to the CVG, we calculate the ball’s
essential property E. As can be seen Figure 2a, only one
ball is essential (ball 0).

Balls 2-4 grow onto the open edges, and new points are
generated until after we generate ball 6. Ball 6 has one of
ball 0’s point inside it, so we are using this existing point
instead of generating a new point. After checking all edge
connections, ball 0 and ball 6 are connected. At this point,
if we check the LCSP for this CVG, a closed polytope with
only one essential facet (ball 0) exists, which satisfies (14).

Figure 2b shows a similar infeasibility proof for the 3D
case. In this example, we define Cobs to be the region between
two balls of radius 0.5 and 2.0. In 3D, the facets are triangles
and the hyper-edges are the triangles’ edges. Again, we grow
the facets onto the open hyper-edges one by one. A total of
51 balls are generated in this case. The red triangles with
solid edges are the triangles decided by the LCSP to form
the polytope. The blue triangles with dashed edges are not
included in the polytope. The collision balls are not shown
in Figure 2b for clarity.

IV. EXPERIMENTS

We evaluate our approach for the Jaco manipulator on
the scenes similar to Figure 1. In our experiments, we

(a) A 2D example. (b) A 3D example.

Fig. 2: Example separating polytopes in 2D and 3D. Red
markers are the start point and the goal point. Yellow
circles/balls are the obstacle region.The red/solid facets form
a closed polytope. The blue/dashed facets is not included in
the polytope. (a) shows a 2D infeasibility proof. (b) shows
a 3D infeasibility proof.

adapt RRT-Connect [17] in OMPL [18] to simultaneously
grow a search tree and CVG. We solve the nonlinear opti-
mization problems using sequential least-squares quadratic
programming (SLSQP) [31], we find workspace collisions
and distances using the Flexible Collision Library [28],
we solve the LCSP using Z3 [32], and we model robot
kinematics using Amino [12], [33].

We evaluate overall runtime and overhead of our ap-
proach. We test six different scenes: three scenes where
a path exists and three scenes where no path exists. For
each scene, we run 12 trials. For the scenes with feasible
paths, we compare the overhead introduced by attempting
to construct the infeasibility proof with an unmodified RRT-
Connect. When no path exists, a traditional sampling-based
planner runs until a timeout, whereas, using our infeasibility
proof construction, the planner is able to terminate when it
constructs the infeasibility proof.

Figure 3 shows profiling results of overall runtime to con-
struct the infeasibility proof. The three functions requiring
the majority of the runtime are the LCSP solver, optimization
to find the new balls, and the collision checking. The process
to find penetration distance, which is called in each iteration
of the optimization process to find new balls, took over 99%
of the optimization time. We discuss approaches to address
these bottlenecks in section V.

For the scenes where a path exists, we compared the
overhead introduced by our approach to the unmodified
RRT-Connect. RRT-Connect required an average runtime of
13.65s, whereas adding the infeasibility proof construction
required an average of 284.06s due to the additional com-
putation to construct the CVG and search for the separating
polytope.

During these manipulator experiments, we also observe
some properties of the configuration space. Configuration
space penetration vectors may not change continuously. The
penetration vectors can change a lot given a small change in
the collision point’s coordinate. This causes the number of
balls in the real obstacle region to be considerably larger than

6708

Fig. 3: Runtime distribution (left). Mean and STD (right).

the Cartesian 3D space in the simple examples (Figure 2b).
The average number of balls for the manipulator is 174,
compared to around 50 for the simple 3D case. We must also
place a maximum limit on the balls radius to ensure small
regions can be covered. Figure 1c shows the configuration
space facets in one of the scenes where a path does not exist.

To compare with the previous method [21], [1], [2], which
also performed experiments on configuration spaces (either
for manipulators or single objects), one advantage of our
method is that the sampling does not need to fill the entire
Cobs as long as we can construct the closed polytope. In
general, this means we do not need to process a large
number of sampling points in Cobs that are not related to
the infeasibility problem.

V. DISCUSSION AND FUTURE WORK

This algorithm and experiments offer initial results to-
wards general case proofs of motion planning infeasibil-
ity. The presented formulation supports the non-Cartesian
configuration spaces of manipulators and is generalizable
to higher dimensions. A key challenge lies in engineering
the sampling, search, and constraints to scale effectively
in higher dimensions. We discuss approaches to address
computational bottlenecks and scale this work.

First, optimizing collisions balls is a current bottleneck. To
produce each collision ball, we must compute penetration
depths—an expensive operation—multiple times. We will
investigate approximate solutions and caching of collision
results to improve this process. Furthermore, generating
collisions balls is highly parallelizable since we may con-
currently optimize the balls for multiple open hyper-edges.

The local search procedure to calculate configuration-
space penetration can also be improved. In (1), given that
we can obtain the correct points of maximum penetration
~xm and collision boundary ~xo, the gradient of the constraint
function would be ∇ ssdJm, where ∇ ssd = 2(~xm − ~xo)T ,
and Jm is the manipulator Jacobian. Gradient-based methods
to solve (1) are potentially faster than the local search method
we implemented.

Second, we may reduce the time to solve the LCSP by
leveraging incremental constraint solving. Each time we add
a new collision ball, we construct and solve an entirely
new LCSP. However, these LCSPs are closely related. In-
cremental constraint solving approaches rapidly solve related
problems by reusing prior search effort [32]. Our previous
work has demonstrated the value of incremental constraint
solving for planning problems [8]. Developing a process to

incrementally add and solve constraints for the LCSP may
be especially helpful in higher dimension where many more
collision balls may be generated.

Finally, the search for collision balls is a key step that
effects scalability. Generating larger numbers of collision
balls results in a larger LCSP, which is slower to solve.
Moreover, the generation process also effects convergence
to a closed polytope. In the current approach, optimizing
the facets to be perpendicular to the penetration vector
offers a heuristic to help ensure that we can add further
collision balls that neighbor the current facet. Meanwhile, the
step of filling holes during the generation process improves
convergence because filling a hole usually closes more open
edges compared to generating a new ball. For the same
reason, the step of filling holes also reduces the number
of balls generated. We will investigate further heuristics
to improve convergence to a closed polytope with a small
number of ball. It is possible that with good heuristics, we
will not need to setup the LCSP problem.

VI. CONCLUSION

We have presented a general method for motion planning
infeasibility proofs and demonstrated the approach on a
low-dimensional manipulator. Our approach progressively
grows volumes in the obstacle region via sampling and
optimization and then attempts to find a closed polytope
separating the start and goal via constraint solving. This
method is applicable to manipulator configuration spaces
widely addressed by sampling-based planners. To practically
apply this approach to high-dimensional path non-existence,
we will further engineer the generation of collision volumes
and the constraint solving process.

REFERENCES

[1] L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for
complete motion planning,” in International Conference on Intelligent
Robots and Systems. IEEE/RSJ, 2007, pp. 7–14.

[2] ——, “A simple path non-existence algorithm using c-obstacle query,”
in Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 269–
284.

[3] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Department, Iowa State University, Tech.
Rep. TR 98-11, 1998.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[5] J. Ota, “Rearrangement of multiple movable objects-integration of
global and local planning methodology,” in International Conference
on Robotics and Automation, vol. 2. IEEE, 2004, pp. 1962–1967.

[6] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” International Journal of
Robotics Research (IJRR), vol. 28, no. 1, pp. 104–126, 2009.

[7] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rear-
rangement tasks,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 4, pp. 549–565, 1998.

[8] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
International Journal of Robotics Research, vol. 37, no. 10, pp. 1134–
1151, 2018.

[9] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” International Journal of Robotics Research,
vol. 33, no. 1, pp. 5–17, 2014.

6709

[10] F. Lagriffoul and B. Andres, “Combining task and motion planning: A
culprit detection problem,” International Journal of Robotics Research,
vol. 35, no. 8, pp. 890–927, 2016.

[11] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics (IJHR), vol. 2, no. 04, pp. 479–503, 2005.

[12] N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “The task motion
kit,” Robotics and Automation Magazine, vol. 25, no. 3, pp. 61–70,
2018.

[13] H. Kautz and B. Selman, “Blackbox: A new approach to the applica-
tion of theorem proving to problem solving,” in AIPS98 Workshop on
Planning as Combinatorial Search, vol. 58260, 1998, pp. 58–60.

[14] J. Rintanen, “Engineering efficient planners with SAT,” in Eu. Con-
ference on Artificial Intelligence (ECAI), 2012, pp. 684–689.

[15] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[17] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Intl. Conference on Robotics and
Automation, vol. 2. IEEE, 2000, pp. 995–1001.

[18] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” Robotics & Automation Magazine (RAM), vol. 19, no. 4, pp.
72–82, 2012.

[19] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes
in configuration space,” arXiv:1109.3145v1 [cs.RO], 2011.

[20] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in International Conference on Robotics
and Automation, vol. 2. IEEE, 2001, pp. 1765–1772.

[21] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in International Conference on
Robotics and Automation. IEEE, 2012, pp. 2563–2569.

[22] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging
and path non-existence: a deterministic sampling-based verification
algorithm,” in Robotics Research. Springer, 2020, pp. 589–604.

[23] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable lazy smt-based motion
planning,” in 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016, pp. 6683–6688.

[24] S. Hirsch and D. Halperin, “Hybrid motion planning: Coordinating two
discs moving among polygonal obstacles in the plane,” in Algorithmic
Foundations of Robotics V. Springer, 2004, pp. 239–255.

[25] G. Varadhan and D. Manocha, “Star-shaped roadmaps-a determinis-
tic sampling approach for complete motion planning.” in Robotics:
Science and Systems, vol. 173. Citeseer, 2005.

[26] A. Dobson, G. V. Moustakides, and K. E. Bekris, “Geometric prob-
ability results for bounding path quality in sampling-based roadmaps
after finite computation,” in International Conference on Robotics and
Automation. IEEE, 2015, pp. 4180–4186.

[27] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learn-
ing feasibility for task and motion planning in tabletop environments,”
IEEE robotics and automation letters, vol. 4, no. 2, pp. 1255–1262,
2019.

[28] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2012, pp. 3859–3866.

[29] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A character-
ization of ten hidden-surface algorithms,” ACM Computing Surveys
(CSUR), vol. 6, no. 1, pp. 1–55, 1974.

[30] H. G. Eggleston, Helly’s Theorem and its Applications, ser. Cambridge
Tracts in Mathematics. Cambridge University Press, 1958, p. 33–44.

[31] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[32] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337–340.

[33] N. T. Dantam, “Practical exponential coordinates using implicit dual
quaternions,” in Workshop on the Algorithmic Foundations of Robotics,
2018.

6710

