
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Learning Proofs of Motion Planning Infeasibility
Sihui Li

Department of Computer Science
Colorado School of Mines
Golden, Colorado 80401

Neil T. Dantam
Department of Computer Science

Colorado School of Mines
Golden, Colorado 80401

Abstract—We present a learning-based approach to prove
infeasibility of kinematic motion planning problems. Sampling-
based motion planners are effective in high-dimensional spaces
but are only probabilistically complete. Consequently, these
planners cannot provide a definite answer if no plan exists,
which is important for high-level scenarios, such as task-motion
planning. We propose a combination of bidirectional sampling-
based planning (such as RRT-connect) and machine learning to
construct an infeasibility proof alongside the two search trees. An
infeasibility proof is a closed manifold in the obstacle region of
the configuration space that separates the start and goal into
disconnected components of the free configuration space. We
train the manifold using common machine learning techniques
and then triangulate the manifold into a polytope to prove
containment in the obstacle region. Under assumptions about
learning hyper-parameters and robustness of configuration space
optimization, the output is either an infeasibility proof or a
motion plan. We demonstrate proof construction for 3-DOF and
4-DOF manipulators and show improvement over a previous
algorithm.

I. INTRODUCTION

Completeness is an important property for motion planning.
A complete planner will always terminate with a plan when one
exists or will report non-existence if no plan exists. Higher-level
planning problems, such as rearrangement planning [1], [2]
and task and motion planning [3], would benefit from complete
motion planning. However, obtaining complete solutions in
high-dimensional motion planning is an ongoing challenge,
and significant effort has been devoted to working around the
lack of full completeness [4]–[8].

Prior work has partially addressed the challenge of complete
motion planning. Complete or resolution-complete methods
such as cell decomposition [9], [10] are effective in low-
dimensional spaces, but decomposing a high-dimensional con-
figuration space is too expensive. On the other hand, sampling-
based motion planners [11], [12] are widely used for high-
dimensional spaces but are only probabilistically complete. If a
plan with positive clearance exists, a probabilistically complete
planner will find it in the limit (given enough time), but if no
plan exists, the planner will not terminate (or will run until
a timeout) [13]. Previously, we proposed a general approach
to find motion planning infeasibility proofs by constructing a
polytope in the configuration space obstacle region to separate
the start and goal [14]. However, combinatorial steps to
construct the polytope posed challenges to practically scale
to high-dimensional manipulators. We address this challenge
with a new, learning-based approach.

Start

Goal

asdf

(a) 4 DoF scenes. (b) Learned manifold for a 2D example.

Fig. 1: (a) An infeasible motion planning problem for a four
degree-of-freedom SCARA arm. (b) The learned proof manifold
and the polytope constructed from it, separating the start and
goal for a 2D scene.

We propose a novel approach to learn proofs of motion plan-
ning infeasibility and demonstrate better empirical scalability
than prior methods for proving motion planning infeasibility.
Our approach integrates learning and bidirectional sampling-
based motion planning. We consider kinematic motion planning
problems without differential constraints. The key insight is
that the start and goal trees of the bidirectional search form two
separate classes in the configuration space. We learn a manifold
to separate these two classes (see Sec. IV-A). Then, we
sample points on the manifold (see Sec. IV-B) and construct a
closed polytope to approximate the manifold using a tangential
Delaunay complex algorithm on the sampled manifold points
(see Sec. IV-C). We prove that the polytope separates the start
and goal by checking that each facet of the closed polytope
is in the obstacle region (see Sec. IV-D). Figure 1b illustrates
a trained manifold and the polytope constructed from it in a
2D configuration space. The existence of such a manifold or
polytope in the obstacle region means the start and the goal are
in separate components of the free configuration space. Thus,
the manifold or polytope is an infeasibility proof.

Under certain assumptions, the result of this approach is
either a motion plan, when one exists, or an infeasibility

 ���

proof in the form of the separating manifold or polytope.
First, we assume a kinematic motion planning problem where
infeasibility is caused only by the obstacle region rather than
the case of differential constraints. Second, we assume hyper-
parameters are properly chosen to incrementally fit the SVM
that will result in a closed and continuous manifold and a
successful triangulation of the manifold (see Sec. IV-A and
Sec. IV-C). Third, we assume the ability to sample points on
the manifold and find penetration depths in configuration space;
we present empirically robust, optimization-based approaches
in (1) to sample points on the manifold and (2) to find
such penetration depths for serial manipulators and workspace
(Cartesian) obstacles. When these assumptions are satisfied,
our algorithm results in a complete planner.

We demonstrate this approach on up-to four-dimensional
configuration spaces of serial robot manipulators (see Figure 1a
and Figure 7b). To the best of our knowledge, this is the first
approach to construct motion planning infeasibility proofs for
such serial manipulators in higher than three dimensions.

II. RELATED WORK

Sampling-based motion planning is an efficient and widely-
used approach for high-dimensional motion planning [11]–[13],
[15]–[17]. However, these approaches are only probabilistically
complete. Recent developments in tools for high-dimensional
computational geometry have made complete motion planning
more feasible [18]–[20].

Some previous work addressed motion planning infeasibility
proofs for single objects. [21] proves path non-existence
for single, rigid objects in a 2D or 3D workspace. They
approximate the obstacle region with a decomposition into
lower dimensional subsets and connected components of those
subsets. Using these components, they construct a connectivity
graph to query whether two configurations are connected.
[22] considers the simplified problem of a rigid body passing
through a narrow gate. They discretize the object’s orientation
and test whether the object can pass through the gate for each
discrete orientation region. These works focus on single objects
in the Cartesian space rather than the configuration space of
robot manipulators.

Other works offer complete motion planning based on space
decomposition. In [23], the authors decompose the obstacle
region into alpha-shapes and then query the connectivity of
two points; scalability to higher dimensions depends on the
computation of high-dimensional alpha-shapes, which is still
an open research question. In [9] and [10], the authors combine
cell decomposition with a probabilistic roadmap (PRM). The
algorithms proposed in [9], [10] are resolution-complete due
to the underlying cell decomposition. However, decomposing
the entire configuration space poses scalability challenges in
higher dimensions.

Deterministic sampling-based motion planning provides
certain guarantees on plan non-existence [24], [25]. Using
low-dispersion sampling strategies, if such a planner does
not find a plan, then either no solution exists or a solution

exists only through some narrow passage. However, the low-
dispersion sampling must largely cover the configuration space,
and the result is similar to resolution-completeness where the
infeasibility guarantee is not exact.

Visibility [26] and sparsity [27] based planners also provide
some degree of infeasibility information. These methods add
sampling points to a roadmap if the points are useful for
coverage, connectivity, or path quality. Planning terminates
when no further points can be added for a certain number
(M) of consecutive samples, and the percentage of the free
space not covered by the roadmap is estimated as 1/M . Thus,
these methods can usually cover a high percentage of the free
space. If no plan is found when the algorithm terminates, the
problem may be considered to be infeasible [28]. However,
these methods do not definitely prove plan nonexistence since
they are based on covering a portion of the free space. In
contrast, our approach seeks to find definite, exact infeasibility
proofs through geometric methods.

To summarize, previous works on infeasibility proofs either
limit analysis to single objects, require decomposition of the
entire configuration space, or provide semi-definite plan non-
existence guarantee. The algorithm in this paper applies to robot
manipulators and only requires decomposition of a manifold in
the configuration space. The result, under stated assumptions,
is either a feasible plan or an infeasiblity proof.

Our previous approach for infeasibility proof construction
in [14] proposed an algorithm to construct a polytope in the
configuration space obstacle region. First, we generated a set of
facets in the obstacle region. Then, we identify the facets that
form a closed polytope separating the start and goal by solving
a set of linear constraints. Facet generation is computationally
expensive, limiting scalability to higher dimensions. Compared
to [14], this paper uses machine learning to generate an initial
manifold, offering better scalability to higher dimensions.

III. PROBLEM DESCRIPTION

This work finds infeasibility proofs for kinematic motion
planning problems. A motion planning problem [29] consists
of a configuration space C of dimension n, a start configuration
qstart, and a goal configuration qgoal. The configuration space
C is the union of the disjoint obstacle region Cobs and free
space Cfree. Both qstart and qgoal are in Cfree. When a feasible
plan exists, the output is a plan σ such that σ[0, 1] ∈ Cfree,
σ[0] = qstart, σ[1] = qgoal. When there is no feasible plan,
the output is a proof of infeasibility.

We consider infeasibility proofs in the form of a closed
manifold M which lies in the obstacle region and which
separates the start qstart and the goal qgoal. We define M as
a level set with f(q) = 0 where f is a continuous function
in C. To separate qstart and qgoal, M must be closed and f
must be positive for one and negative for the other.

Definition 1 (Infeasibility Proof). An infeasibility proof is a
closed manifold M, where,

M = {q | f(q) = 0 ∧ q ∈ Cobs},
s.t. f(qstart)f(qgoal) < 0 .

 ���

Proposition 1. No plan σ exists if and only if there exists a
manifold M according to Definition 1.

Proof: First, we prove that if M exists, no plan σ exists.
M is entirely in Cobs, f(qstart) < 0 (> 0) and f(qgoal) > 0
(< 0), meaning qstart and qgoal are on different sides of
M. Thus, M separates qstart and qgoal into disconnected
components of Cfree, so no plan σ exists.

Second, we prove by contradiction that if no plan σ exists,
M must exist. Assume no plan σ exists and no M exists. The
Cfree components of qstart and qgoal are not separated by Cobs,
thus there would exist a plan σ. Contradiction.

The configuration space boundaries (e.g. joint limits) are a
special case. We treat the boundaries as fixed obstacle regions
with ε thickness to ensure the existence of M in general.

We note that the proof manifold in Definition 1 may be
either a smooth or piecewise manifold in the configuration
space. In the rest of the paper, we will use the term “manifold”
to refer to the learned function from the kernel-SVM, and
“polytope” to refer to its triangulation.

We assume, for this work, motion planing in which in-
feasibility is caused only by the obstacle region, and we
do not consider differential constraints. That is, we do not
consider steering functions [30], dynamics [31], or implicit
constraints [32]. Though this assumption is valid for many
manipulation scenarios, future work is needed to address more
general cases.

Another important assumption of our algorithm is the ability
to sample points on the manifold and the ability to obtain
configuration space penetration depth. We provide in (1) and (2)
empirically robust, optimization-based approaches to sample
the manifold and calculate configuration space penetration
depth for Cartesian obstacles, which is a typical case for robot
manipulators. However, these results are not theoretical proofs
that points on the manifold and the penetration depth are always
available. Under the assumption that we can sample on the
manifold and compute configuration space penetration depth,
our algorithm will terminate. We demonstrate robust ability to
find plans or infeasibility proofs for robot manipulators in the
experiments (see Sec. V).

IV. ALGORITHM

Our algorithm will generate either a motion plan or an
infeasibility proof in the form of a polytope separating the
start and goal configurations (Definition 1). Figure 2 illustrates
the structure of our algorithm, and algorithm 1 describes the
proof construction in pseudocode. We combine bidirectional
sampling-based motion planning and machine learning of the
separating manifold. Our algorithm runs the bidirectional search
and manifold construction in parallel, terminating with either
a plan or an infeasibility proof.

Our infeasibility proof construction follows two broad steps.
First, we construct a potential infeasibility proof that separates
the start and the goal via learning and manifold triangulation.
Then, we check that the potential infeasibility proof is entirely

No up-
sampling
points

Sample Manifold

Check
Polytope

Bi-directional
sampling-based planner

1

Input: C-space,
start, and goal

Terminate
with

infeasibility
proof

Terminate
with

feasible
plan

Start tree, goal tree, sampled Cobs points

Plan
Found

Learn Manifold

Triangulation

Up-sampling points

Manifold Points in
Cfree

P
ro

of
 C

on
st

ru
ct

io
n

Manifold Points

Fig. 2: An algorithm overview. The red block is showing the
infeasibility proof construction, which runs in parallel with a
bidirectional sampling-based planner.

in the obstacle region. If both steps are successful, we have
an infeasibility proof as defined in Definition 1. If not, we
up-sample and go back to the first step.

The input to the first broad step consists of the start and
goal trees from the bidirectional planner and a set of points
sampled in the obstacle region by the planner. First, we learn a
manifold that separates the two trees into two different classes
(see Sec. IV-A). Then, we sample points on the manifold
by projecting the obstacle region points onto the manifold
(see Sec. IV-B). Lastly, we triangulate the manifold using the
sampled manifold points with tangential Delaunay complex
(see Sec. IV-C). The output of this first broad step is a potential
infeasibility proof in the form of a polytope.

The input to the second broad step is the polytope from the
first step. We check that the polytope is entirely in Cobs by
testing each facet (see Sec. IV-D). If part of a facet is outside
the obstacle region, we may need to check a smaller cell that
more-closely approximates the manifold, so we attempt to up-
sample the manifold and recreate the polytope. If up-sampling
fails, it means the manifold we learned in the first broad step
is not entirely in Cobs, so we repeat the first step with updated
inputs. If all facets are in the obstacle region, then the polytope
is a valid infeasibility proof.

A. Learn a Manifold

First, we learn a manifold. We treat the points in the two
search trees from the bidirectional planner as two classes; then,
we learn a classifier (line 15). The particular classifier we use
is a support vector machine (SVM) with Radial Basis Function
(RBF) kernel. Other classifiers may fit within the framework of
our approach, but the SVM has three notable benefits. First, the
SVM directly provides a closed-form, differentiable function
for the separating manifold, which we use to check if the
manifold is in the obstacle region. Second, the SVM has
fewer hyper-parameters than other methods such as Neural
Networks. Finally, the SVM creates a margin to maximize
separation between classes. In our use case, this maximum
margin increases penetration depth of the manifold points in
the obstacle region, which helps us check facets in Sec. IV-D.

Unlike typical machine learning applications, over-fitting is

 ���

Manifold outside of obstacle region

(a) 1000 sampling points (b) 2000 sampling points (c) 3000 sampling points (d) 4000 sampling points

Fig. 3: We treat the points in the two search trees as two classes and learn a classifier (the separating manifold). (a)-(d) Learned
manifold fits into the obstacle region as more points are sampled (1000 points - 4000 points), the blue circles are showing parts
of the manifold outside of the obstacle region. The same applied to 4 DoF robot arms in Sec. V.

Algorithm 1: Construct Infeasibility Proof

1 function samp-mf(f, Pstart, Pgoal, Pobs) is
2 Pm ← ∅; flag← false;
3 foreach qobs ∈ Pobs do
4 qm ← find-closest-point(qobs, f);
5 if qm ∈ Cfree then
6 add-point(Pstart, Pgoal,qm);
7 flag← true;
8 else Pm ← Pm ∪ {qm};
9 if flag then return ∅;

10 else return Pm;

11 Pstart, Pgoal, Pobs = ∅;
12 repeat
13 repeat /* Sec. IV-A and Sec. IV-B */
14 obtain-points(Pstart, Pgoal, Pobs);
15 f ← train-manifold(Pstart, Pgoal);
16 Pm ← samp-mf(f, Pstart, Pgoal, Pobs);
17 until Pm 6= ∅;
18 repeat /* Sec. IV-C and Sec. IV-D */
19 Pup ← ∅;
20 Psubm ← subsampling(Pm);
21 F ← tangential-complex(Psubm);
22 if F = ∅ then // Triangulation fails
23 Pup = {0};
24 break;

25 foreach ft ∈ F do // Check polytope
26 qup ← check-facet(ft);
27 Pup ← Pup ∪ {qup};
28 if Pup 6= ∅ then // Upsample Manifold
29 Pupm ← samp-mf(f, Pstart, Pgoal, Pup);
30 if Pupm = ∅ then Pm ← ∅;
31 else Pm ← Pm ∪ Pupm;

32 until (Pup = ∅) ∨ (Pm = ∅);
33 until Pup = ∅;
34 return F ;

actually desired in our case since we want to learn a manifold
that separates the start and goal trees without exception. When
training the manifold, we increase the over-fitting parameter γ
in the RBF kernel by a small amount of ∆γ each time until the
training set’s score is 1. This step ensures that the manifold does
not over-fit too much and become discontinuous (see Appendix
A for a discontinuous example). The γ parameter and the small
increasing value ∆γ are hyper-parameters of the algorithm. We
use 1.0 and 0.1 in the experiments, which are robust for the
tested robot scenes. We use a fixed regularization parameter
for all the training; we do not need to adjust the regularization
parameter since we do not allow any misclassifications.

According to Definition 1, the manifold must be closed, con-
tinuous, and entirely in Cobs. In the following two paragraphs,
We explain how learning the manifold from progressively larger
trees results in such a manifold when there is no feasible plan.

First, if no plan exists, we eventually learn a manifold
contained in Cobs given enough training points. If no plan
exists, then there must be a closed obstacle region that separates
the start tree and the goal tree. Since the obstacle region is
closed, it has an outer boundary and an inner boundary. We
first consider the case of two free space components, where the
outer boundary is in contact with the region of the start (goal)
tree, and the inner boundary is in contact with the region of the
goal (start) tree. For the case of multiple free space components,
we must grow additional trees in the additional components
similar to a PRM, though our current implementation addresses
only the case of two components. If we have enough points
sampled close to both boundaries, the points of the trees as
support vectors will force the manifold into the obstacle region.
In Figure 3, as the number of points in the start and goal trees
increases, the learned manifold fits more fully into Cobs.

Second, using the training process that incrementally over-
fits with a small enough over-fitting incremental value ∆γ, the
resulting manifold will eventually be closed and continuous.
The manifold function from RBF-kernel SVM is a combination
of Gaussian functions centered at the support vectors. The over-
fitting parameter γ essentially influences the effecting range of
the Gaussian functions. If the effecting range is too large, then
there will be misclassifications. If the effecting range is too

 ���

small, then the Gaussian functions will form separate regions
at the support vectors. With the right effecting range or over-
fitting parameter, the combination of Gaussian functions will
be closed and continuous when the support vectors are sampled
densely enough since the target obstacle region is closed. The
training process that incrementally over-fits will choose the
largest effecting range (with the fixed incremental value ∆γ
as changing steps) that is small enough to fit all the training
data, so that the combination of Gaussian functions will not
form separate regions, meaning the manifold is continuous.

To summarize, if no plan exist, given enough training points,
using the training process that incrementally over-fits with
a small enough over-fitting incremental value, the resulting
manifold will eventually be closed, continuous, and contained
in Cobs.

Manifold triangulation using tangential Delaunay complexes
(Sec. IV-C) requires the manifold to be a closed, continuous,
and differentiable submanifold of n-dimensional Euclidean
space [33]. In our case, the learned manifold from RBF kernel-
SVM is differentiable since the resulting manifold function is
a combination of Gaussian functions. Since we do not know
how many sample points are necessary to ensure manifold
closure and continuity, the triangulation step also serves as
a validation step. If the triangulation is successful, then the
manifold must be closed and continuous. If the triangulation
step is not successful, we need to retrain the manifold with
more sampled points from the two trees.

B. Sample Manifold Points

After learning a manifold, we use the obstacle region points
Pobs to sample points on the manifold, which we will then use
to construct the polytope in the next step. In most sampling-
based methods, Pobs are discarded, but in our algorithm, we
save all the points sampled in obstacle region.

For each point in Pobs, we find the closest point on the
manifold (line 4) which is the solution of the following
nonlinear constrained optimization problem,

min
qm

dist(qobs,qm)

s.t. f(qm) = 0 ,
(1)

where the qobs is the given point in Cobs, qm is the manifold
point we want to find, and f is defined in Definition 1, which is
the training result of the previous step. Solving this optimization
problem for every point in Pobs produces a set of points on
the manifold. We use Pobs to sample manifold points because
they are more likely to exist closer to the manifold since
the manifold is largely in Cobs, thus solving the optimization
problem faster. If solving this optimization problem fails for a
point, we discard that point. Though (1) may not be robustly
solvable for all possible configuration spaces, we are able to
robustly solve this optimization problem for the experimental
scenarios involving robot manipulators in Sec. V.

Because the manifold must be entirely in Cobs, we check
if any sampled manifold point is in Cfree at this stage. If
we find a sampled manifold point in Cfree, then the manifold

cannot be fully in Cobs, and we need to retrain the manifold.
Before retraining, we try to add the point in Cfree to either
the start tree or the goal tree by interpolating a straight line
between the point and the closest point to it on either of the
two trees (line 6). Note that our implementation adds the point
to a copy of the trees for the infeasibility proof but not the
start tree and goal tree used by the bidirectional planner (e.g.,
RRT-connect), since we want this algorithm to work with any
bidirectional motion planner without the need to modify the
underlying planner. Now that we have a set of points on the
manifold, the next step uses these points to create a polytope
that approximates the manifold.

C. Manifold Triangulation

Since proving a manifold is in Cobs directly is difficult, we
construct a polytope from the sampled manifold points using
tangential Delaunay complexes [18], [33] and then prove that
the polytope is in Cobs. Tangential Delaunay complexes can be
used to reconstruct a triangulation of a manifold given a set
of points on the manifold. In [18], [33], the authors provide
an algorithm to construct the tangential Delaunay complexes
for triangulation of manifolds, which is implemented in [34].
We apply this algorithm to the sampled manifold points from
Sec. IV-B to triangulate the SVM manifold. The triangulation
of the manifold forms a polytope, which we use in later steps.

Here, we focus on the key requirements and results of the tri-
angulation algorithm; please see [33] (chapter 7 and chapter 8)
for a more complete explanation. To construct the triangulation
successfully, the algorithm has several requirements. As stated
in Sec. IV-A, the first requirement is that the manifold should be
closed, continuous and differentiable, which is already satisfied.
Secondly, the sampling points must cover the entire manifold
and distribute evenly on the manifold. Stated precisely, the
sampled set of points must be an (ε, η)−net of the manifold.

Definition 2. A finite point set P is an (ε, η)−net of M, iff
• (ε-dense) for any point x ∈M, let p be the closest point

to x in P , ‖p− x‖ < ε;
• (η-separated) for any two points p, q ∈ P , ‖p− q‖ > εη.

In algorithm 1, we ensure the (ε, η)−net requirement by
applying a subsampling process (line 20). This subsampling
process has two parts. First, we subsample a fixed subset of
the manifold points (half of all the manifold points) that are
as far away from each other as possible. Next, we subsample
again from the result of the first subsampling by ensuring
a minimum distance dmin between two points. Together,
these two subsampling ensures the resulting points set is an
(ε, η)−net of M for some ε and η. If we have more manifold
points, ε would be smaller. If we use smaller minimum distance
in the second subsampling step, ε would also be smaller. We
do not need to calculate ε and η exactly.

The minimum distance dmin in the subsampling process
is a hyper-parameter in our algorithm. We choose the dmin

according to the obstacle region Cobs of the configuration space,
with larger dmin if Cobs separating the goal or start is large
and smaller dmin if Cobs separating the goal or start is small.

 ���

x
2 1 0 1 2

y
2 1 0 1 2

z

2

1

0

1

2

(a) Simple c-space polytope

x
0 1

2
3 y1

2

z

3

4

5

(b) 3 DoF Jaco arm’s polytope.

Fig. 4: Example 3D polytopes constructed using tangential
Delaunay complexes. (a) The obstacle region is between two
balls of radius 2.0 and 0.5. (b) The polytope constructed in
the 3 DoF Jaco arm experiment (no obstacle region shown).

In general, this value should be small enough to triangulate
any curves on the manifold. This parameter is empirical (see
Sec. V for the specific values for each robot scenes). A poor
dmin may cause triangulation to fail. Automatic tuning of this
hyper-parameter is an important future work.

[33] proves that if the above requirements are satisfied
and ε is small enough, the resulting triangulation from the
algorithm approximates the manifold with bounded error. The
algorithm is linear in the dimension of the Euclidean space
(n), exponential in the dimension of the manifold (n − 1 in
our case, where n is the dimension of C), and quadratic in the
number of sampled points [18].

If applying the algorithm on the subsampled points returns
a triangulation of the manifold successfully, then we have
constructed a closed polytope for the next step (Figure 1b
shows a 2D polytope). If not, we go back to retrain the
manifold and obtain more manifold points (line 22) for a
small ε. After triangulation, we have completed the first
broad step. The resulting polytope is a potential infeasibility
proof. Figure 4 shows polytopes constructed using tangential
Delaunay complexes in a predefined configuration space and
the configuration space of a 3 DoF Jaco arm.

D. Check Polytope and Up-sampling

For the polytope from previous steps to be an a valid
infeasibility proof, it must be entirely in Cobs. We prove this
by checking each facet of the polytope (line 26).

We check each facet by iteratively checking smaller cubes
that enclose the facet. Starting from the smallest (n− 1)-cube
that encloses the facet, if the configuration space penetration
depth of the center of the cube is larger than the center’s
distance to the cube’s vertices, then the cube is entirely in
Cobs, so the enclosed facet is entirely in Cobs. If this check
fails, we decompose the cube into 2(n−1) smaller cubes and
go through the same checking process. We only need to check
cubes that intersects with the facet. For each cube, we also
check whether the center of the cube is inside the facet and in
Cfree. If this is the case, it means part of the facet is in Cfree,

d

Fig. 5: This process ensures each facet is in the obstacle region
by recursively checking smaller (n-1)-cubes.

then the center becomes an up-sampling point (qup on line 26).
Figure 5 shows the process of checking a 2D facet.

We terminate checking the current facet when either the
entire facet is checked or we find up-sampling points. If there
are upsampling points returned from checking facets (line 28),
we use these upsampling points to sample more manifold
points. If sampling manifold points is successful, we add these
new manifold points to the existing set of manifold points,
re-triangulate the manifold and re-check the new polytope. If
sampling manifold points fails, we must retrain the manifold,
so we go back to rerun the first broad step.

In this checking process, finding the configuration space
penetration depth (PD) is a key sub-routine. Existing libraries
compute [35] Cartesian space penetration depth. We find the
configuration space penetration depth of point q by solving
the following nonlinear optimization problem,

min
q

dist(qo, q)

s.t. Penetration-Depth(xl(q), xo) ≤ 0

l ∈ {1, ..., nlink}, o ∈ {1, ..., nobs} ,

(2)

where qo is the configuration in Cobs, q is the point we want
to find in Cfree, nlink is the number of manipulator links, nobs
is the number of obstacles, xl is Cartesian point of maximum
penetration on link l, xo is the Cartesian point of maximum
penetration on obstacle o. If link l and obstacle o are colliding
with each other, Cartesian space PD between these two frames
is positive, otherwise, it is negative. The optimization objective
is to minimize configuration space distance, subject to q being
a point in Cfree (see Figure 6). In the constraints, we ensure q
is in Cfree by checking every robot link against every object.
A point outside of C boundaries is also considered to be in
Cobs, and its PD is the distance to the closest point in Cfree.

If this optimization problem is not solvable for some points,
we can discard the points and keep checking smaller cubes;
however, we did not observe unsolved optimizations in the
experiments, meaning this method is an empirically robust way
to compute penetration depth.

E. Algorithm Summary

Our algorithm runs the bidirectional search and proof
construction in parallel. Proof construction will use the latest
available search trees and obstacle region points to learn and
sample a manifold. We apply the tangential Delaunay complex
algorithm to the subsampled manifold point to construct a
polytope. Then, we check each facet of the polytope and collect

 ���

POA

PDB

PDA

POB

Obstacle Region

Obstacle Region
Boundary

PA

PB

Fig. 6: Configuration space penetration depth of two points
POA and POB in Cobs. PA and PB are their corresponding
closest points that satisfy the constraints.

up-sampling points. We use these up-sampling points to sample
more manifold points, re-triangulate or retrain the manifold if
necessary, until there are no up-sampling points. When there are
no more up-sampling points, all facets of the closed polytope
are in Cobs, which means the entire polytope is in Cobs and
thus constitutes an infeasibility proof according to Definition 1.
To summarize, under the assumptions on configuration space
optimization (Equation 1 and Equation 2) and good choices of
hyper-parameters (γ, ∆γ, and dmin), the algorithm terminates
with a plan or an infeasibility proof. Here we acknowledge that
termination of our algorithm depends on good choices hyper-
parameters. In Sec. VI, we discuss the three hyper-parameters
in more detail.

V. EXPERIMENTS

We run three sets of experiments to evaluate the performance
of the algorithm. The first experiment uses the same Jaco
arm scenario as [14] to directly compare with our previous
algorithm. The next two experiments use two different four
DoF arms—which could not be solved by [14]—to demonstrate
the improved scalability.

In our experiments, we adapt RRT-Connect [15] in
OMPL [16] to run in parallel with our infeasibility proof con-
struction. We solve the nonlinear optimization problems using
sequential least-squares quadratic programming (SLSQP) [36].
We construct the polytope using the tangential complex module
in GUDHI package [34]. We train the manifold using Scikit-
learn [37]. We check collisions and penetration depth using the
Flexible Collision Library [35], and we model robot kinematics
using Amino [38]. We determine ground truth for plan non-
existence to high-confidence for a scene by running RRT-
connect continuously for greater than 20 minutes.

A. Three DoF Robot Experiment

To compare with our previous approach, we apply the current
method to the Jaco arm experiment in [14]. We test on three
different scenes where no path exists. The goal in these scenes
is to grasp the blue block at the back of the shelf from a
position outside of the shelf (see Figure 7a).

(a) 3 DoF robot scene.

Start

Goal

(b) 4 DoF robot scene.

Fig. 7: Experiment scenes

Table I shows average time and profiling results of the current
and prior algorithms. Compared with the previous method, the
current algorithm’s average running time is three times faster.
Standard deviations of running time are also smaller with
respect to the mean, indicating that the new algorithm has
more consistent performance. In the previous algorithm, the
large variance mainly comes from the generation of facets.
Random sampling influences the number of facets needed to
form the polytope significantly, which range from 53 to 332
in the 36 trials. In the current algorithm, the variance is much
smaller because we learn the manifold to guide construction
of the polytope, which reduces the impact of randomness.

When paths exist, the current algorithm is also better than the
previous method. In the current algorithm, RRT-connect runs
in parallel with the infeasibility proof construction. Assuming
multiple cores to run both threads in parallel, proof construction
will have less effect on wall clock running time when paths
exist. With the previous algorithm, creating new facets was not
separable from the sampling process, which increased running
time due to the additional computation regardless of whether
paths exist or not. A potential drawback of the current algorithm
is that it only applies to bidirectional sampling-based planning,
whereas the previous algorithm applies also to unidirectional
sampling-based planning.

B. Shoulder-Elbow Robot Experiment

We apply our approach to the four DoF robot arm scene in
Figure 7b. The robot has a shoulder joint (three DoF spherical)
and an elbow joint (one DoF revolute). The goal is to reach
inside the red box. We run 24 trials on this scene. Infeasibility
proofs for this four DoF arm take less than 4 minutes on
average, as shown in Table II. Table II also shows the size
of Pobs, the number of polytope facets and the number of
polytope vertices. In the experiments, we use a subsampling
minimum distance of 0.002.

C. SCARA Robot Experiment

We apply the algorithm to the SCARA arm and the scene in
Figure 1a. The SCARA arm has three co-planar revolute joints
and one prismatic joint. The goal in this scene is to reach inside
the purple box with the red block attached at the end-effector.
Infeasibility proofs for this SCARA arm take about 7 minutes
on average, as shown in Table III. In the experiments, we

 ���

use a subsampling minimum distance of 0.01. Compared to
the previous experiment, we see that the complexity of the
workspace influences running time, since we need more points
to train and sample the manifold.

D. Feasible Plan Experiments

For the above three scenes, we modify the scenes to make
plans feasible but still difficult to find. For the Jaco arm, we
move the shelf further away from the robot base to make the
blue box reachable. For the 4DOF shoulder-elbow robot, we
move the red box away from the robot base to make the inside
reachable. For the SCARA arm, we move the ball away from
the box to make room for the arm to pass. We run these scenes
on RRT-connect with and without the infeasiblity proof for 24
trails each. Table IV shows the comparison.

When there is a feasible plan, running RRT-connect with
infeasibility proof construction introduces minor absolute
overhead if the plan can be found in a relatively short time. If
the scene is more complicated, running RRT-connect with
infeasibility proof construction introduces more overhead,
which is mainly caused by saving all the sampling points. A
better-optimized implementation may reduce this overhead. The
current implementation uses an interpreted language (Python)
to save the additional data and construct the infeasibility proof,
while RRT-connect is implemented in C++ [16].

We note that in all the trials we ran (84 trials of infeasible
scenes and 72 trials of feasible scenes), the algorithm correctly
found either the infeasibility proof or the plan.

Previous Algorithm [14] Runtime and Profiling (s)
Total LCSP Colli-Check PD

Mean 457.50 46.62 51.24 326.79
STD 396.24 41.77 146.05 172.96

Current Algorithm Runtime and Profiling (s)
Total TC samp-mf PD

Mean 177.36 15.15 51.69 89.23
STD 71.35 30.65 30.65 20.88

TABLE I: Runtime comparison with previous algorithm,
averaged over 3 scenes and 12 trials each scene. Current
algorithm runs about 3 times faster.

4 DoF Shoulder-Elbow Robot Experimental Results
Total (s) TC (s) samp-mf (s) PD (s)

Mean 230.82 67.19 51.97 94.40
STD 90.95 47.82 39.36 27.89

of Pobs # of Facets # of Vertices
Mean 16 340.42 8188.38 1281.84
STD 4930.06 2353.53 361.61

TABLE II: Experimental results for 4 DoF shoulder-elbow
robot, averaged over 24 trials. “TC” is for triangulation with
tangential complex, “samp-mp” is for sampling of manifold
points, “PD” is for calculating penetration depth.

SCARA Arm Experimental Results
Total (s) TC (s) samp-mf (s) PD (s)

Mean 433.00 25.01 317.47 69.80
STD 220.43 29.97 184.78 10.95

of Pobs # of Facets # of Vertices
Mean 16 747.86 3094.17 503.80
STD 3104.73 365.65 57.46

TABLE III: Experimental results for SCARA arm, averaged
over 24 trials. “TC” is for triangulation with tangential complex,
“samp-mp” is for sampling of manifold points, “PD” is for
calculating penetration depth.

Plan Feasible Experiments mean/std (s)
Jaco 4 DoF SCARA

RRT-connect 4.21/1.69 0.025/0.010 42.20/22.43
RRT-connect w/ IF 5.18/2.56 0.109/0.027 84.34/48.30

TABLE IV: Experimental results for plan feasible experiments,
averaged over 24 trials, running RRT-connect only vs. running
RRT-connect with infeasibility proof.

VI. DISCUSSION AND FUTURE WORK

Our ongoing goal is to extend the infeasibility proof
construction to higher dimensions. A current bottleneck is the
triangulation of the manifold. Since calculating the tangential
complex [34] is exponential in the dimension of the manifold
space, we anticipate that it will take a larger percentage of
runtime in higher dimensions. The other two time-consuming
processes—sampling the manifold and calculating PD—apply
nonlinear optimization, which we expect to scale well. Another
issue is with random sampling of Pobs. An evenly distributed
Pobs would potentially reduce the number of samples needed.
Exploring deterministic sampling is a possible future direction.

There are three hyper-parameters in our algorithm, γ, ∆γ,
and dmin. The first two hyper-parameters are set for learning
the manifold. γ can be a small value since we will increase γ
by ∆γ if the manifold does not fit all the training data. We
use γ = 1.0 for all the experiments. ∆γ needs to be small
enough so that the manifold would not go from under-fitting
to having separate regions (see Appendix A) in one step’s
change. We use ∆γ = 0.1 in all the experiments. dmin is a
hyper-parameter in the subsampling process that controls the
manifold triangulation step. dmin should be small enough to
form triangulation at any small curves of the manifold. In the
experiments, we choose small values of dmin. Small dmin value
will result large numbers of manifold points for triangulation
after subsampling, which will produce more facets on the
polytope and thus make triangulation slower.

Termination of our algorithm does depend upon the selected
hyper-parameters. We acknowledge the algorithm’s reliance
on hyper-parameters, and sensitivity analyses and auto-tuning
hyper-parameters is one area of future work. However, we note
that such dependence upon hyper-parameters exists in many
algorithms. For example, selecting an RRT step size that is
too large may cause it to fail [39].

Our current implementation uses only two search trees to
learn the manifold. While we were able to construct proofs for

 ���

the scenarios in Sec. V, general proof construction for multiple
free space components requires creating and learning from
multiple trees using a 1 vs. n classification.

Additionally, alternative approaches to check whether the
learned manifold is in Cobs could benefit proof construction. In
the experiments, we find that once we constructed a manifold
with all sampled points in Cobs, the later triangulation step
rarely discovers parts of the manifold or polytope in Cfree. That
is, after learning a manifold for the first time, we typically
already have a manifold entirely in Cobs. However, a large
portion of runtime is expended to verify this fact.

VII. CONCLUSION

We have presented a novel method to learn proofs of motion
planning infeasibility, and we demonstrated this method for
three and four DoF robot manipulators. Our approach learns
a manifold and constructs a polytope from manifold points
that separates the start and goal into different components of
the free configuration space. Under the assumptions on the
configuration space components, the ability to obtain robust
solutions to the optimization problems, and the suitability of
hyper-parameters, our planner is complete. This work improves
scalability compared to our previous method [14] and is, to
our knowledge, the first approach to construct infeasibility
proofs for robot manipulators in greater than three dimensions.
Extensions of this work to higher dimensions, more free space
components, and generalization to steering functions [30],
dynamics [31], and additional constraints [32] are promising
directions for future research.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the National Science
Foundation under Grant No. IIS-1849348.

REFERENCES

[1] J. Ota, “Rearrangement of multiple movable objects-integration of global
and local planning methodology,” in International Conference on Robotics
and Automation, vol. 2. IEEE, 2004, pp. 1962–1967.

[2] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrange-
ment tasks,” Transactions on Robotics and Automation, vol. 14, no. 4,
pp. 549–565, 1998.

[3] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” International Journal of
Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[4] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
International Journal of Robotics Research, vol. 37, no. 10, pp. 1134–
1151, 2018.

[5] K. Hauser, “The minimum constraint removal problem with three robotics
applications,” International Journal of Robotics Research, vol. 33, no. 1,
pp. 5–17, 2014.

[6] F. Lagriffoul and B. Andres, “Combining task and motion planning: A
culprit detection problem,” International Journal of Robotics Research,
vol. 35, no. 8, pp. 890–927, 2016.

[7] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal of
Humanoid Robotics (IJHR), vol. 2, no. 04, pp. 479–503, 2005.

[8] A. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[9] L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for complete
motion planning,” in International Conference on Intelligent Robots and
Systems. IEEE/RSJ, 2007, pp. 7–14.

[10] ——, “A simple path non-existence algorithm using c-obstacle query,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 269–284.

[11] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Deptartment, Iowa State University, Tech.
Rep. TR-98-11, October 1998.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[14] S. Li and N. T. Dantam, “Towards general infeasibility proofs in motion
planning (accepted),” in International Conference on Intelligent Robots
and Systems. IEEE/RSJ, 2020.

[15] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Intl. Conference on Robotics and
Automation, vol. 2. IEEE, 2000, pp. 995–1001.

[16] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” Robotics & Automation Magazine (RAM), vol. 19, no. 4, pp.
72–82, 2012.

[17] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in
configuration space,” arXiv preprint arXiv:1109.3145, 2011.

[18] J.-D. Boissonnat and A. Ghosh, “Manifold reconstruction using tangential
delaunay complexes,” Discrete & Computational Geometry, vol. 51, no. 1,
pp. 221–267, 2014.

[19] E. Fogel, D. Halperin, and R. Wein, CGAL arrangements and their
applications: A step-by-step guide. Springer Science & Business Media,
2012, vol. 7.

[20] D. Halperin, O. Salzman, and M. Sharir, “Algorithmic motion planning,”
in Handbook of Discrete and Computational Geometry. Chapman and
Hall/CRC, 2017, pp. 1311–1342.

[21] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging and path
non-existence: a deterministic sampling-based verification algorithm,” in
Robotics Research. Springer, 2020, pp. 589–604.

[22] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in International Conference on Robotics
and Automation, vol. 2. IEEE, 2001, pp. 1765–1772.

[23] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in International Conference on
Robotics and Automation. IEEE, 2012, pp. 2563–2569.

[24] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based
motion planning: Optimality, complexity, and performance,” The In-
ternational Journal of Robotics Research, vol. 37, no. 1, pp. 46–61,
2018.

[25] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-randomized
path planning,” in Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (Cat. No. 01CH37164), vol. 2. IEEE,
2001, pp. 1481–1487.

[26] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6, pp.
477–493, 2000.

[27] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptotically
near-optimal motion planning,” The International Journal of Robotics
Research, vol. 33, no. 1, pp. 18–47, 2014.

[28] A. Orthey and M. Toussaint, “Sparse multilevel roadmaps for high-
dimensional robotic motion planning.”

[29] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[30] G. Lafferriere and H. Sussmann, “Motion planning for controllable

systems without drift,” in Proceedings. 1991 IEEE International Confer-
ence on Robotics and Automation. IEEE Computer Society, 1991, pp.
1148–1149.

[31] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[32] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” The International Journal of
Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019.

[33] J.-D. Boissonnat, F. Chazal, and M. Yvinec, Geometric and
Topological Inference. Cambridge University Press, 2018, cambridge
Texts in Applied Mathematics. [Online]. Available: https://hal.inria.fr/
hal-01615863

[34] C. Jamin, “Tangential complex,” in GUDHI User and Reference
Manual, 3.4.0 ed. GUDHI Editorial Board, 2020. [Online]. Available:
https://gudhi.inria.fr/doc/3.4.0/group tangential complex.html

 ���

https://hal.inria.fr/hal-01615863
https://hal.inria.fr/hal-01615863
https://gudhi.inria.fr/doc/3.4.0/group__tangential__complex.html

[35] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2012, pp. 3859–3866.

[36] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[38] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions,” International Journal of Robotics
Research, 2020.

[39] C. Wang and M. Q.-H. Meng, “Variant step size rrt: An efficient
path planner for uav in complex environments,” in IEEE International
Conference on Real-time Computing and Robotics. IEEE, 2016, pp.
555–560.

APPENDIX A

When the over-fitting parameter γ is set too large, RBF-
kernel SVM can produce manifolds that are separated for the
different parts of the training data, which is undesired in our
case. Figure 8 shows the effect of γ on a 2D example with
the same 1000 training points. When γ is 4.0, the manifold is
continuous and closed. When γ is 10.0, the manifold is still
closed but more curved. When γ is 20.0, the manifold has two
parts. When γ is 40.0, the manifold has multiple parts. In the
algorithm, we increase the value of γ gradually by a small,
fixed value to avoid the discontinuities (“overly” over-fitting)
in Figure 8c and Figure 8d.

(a) γ = 2.4 (b) γ = 10.0

(c) γ = 20.0 (d) γ = 40.0

Fig. 8: Effect of over-fitting parameter γ on RBF-kernel SVM
training. Too large γ may produce discontinuous manifolds. ���

	I Introduction
	II Related Work
	III Problem Description
	IV Algorithm
	IV-A Learn a Manifold
	IV-B Sample Manifold Points
	IV-C Manifold Triangulation
	IV-D Check Polytope and Up-sampling
	IV-E Algorithm Summary

	V Experiments
	V-A Three DoF Robot Experiment
	V-B Shoulder-Elbow Robot Experiment
	V-C SCARA Robot Experiment
	V-D Feasible Plan Experiments

	VI Discussion and Future Work
	VII Conclusion
	VIII Acknowledgements
	References
	Appendix A

