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Abstract. Proving motion planning infeasibility is an important part of
a complete motion planner. Common approaches for high-dimensional mo-
tion planning are only probabilistically complete. Previously, we presented
an algorithm to construct infeasibility proofs by applying machine learning
to sampled configurations from a bidirectional sampling-based planner. In
this work, we prove that the learned manifold converges to an infeasibil-
ity proof exponentially. Combining prior approaches for sampling-based
planning and our converging infeasibility proofs, we propose the term
asymptotic completeness to describe the property of returning a plan or
infeasibility proof in the limit. We compare the empirical convergence of
different sampling strategies to validate our analysis.

1 Introduction

A complete motion planner returns a plan when one exists and reports failure
when no plan exists [32]. Such complete motion planners would be desirable for
high-level planning problems such as task and motion planning [14,18] that must
solve motion planning as a sub-problem; when no motion plan exists, analyzing the
infeasibility of motion planning would help eliminate search branches and improve
efficiency. Significant previous work focused on finding feasible or optimal motion
plans [19,22,23,26,28,38,39,44,49]. This paper addresses the complementary issue:
finding infeasiblity proofs when no motion plan exists.

In [34], we introduced an algorithm to construct infeasibility proofs in motion
planning by learning a manifold in the obstacle region to separate the start and
goal configurations. The algorithm has two main steps. In the learning step, we
train a classifier between points in the start tree and points in the goal tree, which
are sampled from RRT-connect[33]. After learning the manifold, in the validation
step, we triangulate it to validate that the manifold is entirely in the obstacle
region. If we can find such an obstacle region manifold, then this manifold is an
infeasibility proof because its existence prevents any collision free path between
the start and goal configurations.

This paper analyzes the convergence of learning infeasibility proof manifolds

and proves that, when no motion plan exists, the learned manifold converges to
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an infeasibility proof exponentially with respect to the number of configurations

in the planning graph. The probability of learning the infeasibility proof depends
on the number of configurations sampled close to the obstacle region. We first
prove that the probability of sampling the necessary regions converges to one
in the limit and then show that this convergence is exponential in the number
of samples (see section 4). We validate convergence empirically and compare
uniform sampling and Gaussian sampling (see section 5). This analysis addresses
the learning step; further analysis of the validation step is part of future work.

For robust convergence, we require certain properties of the configuration
space. In particular, the obstacle region must be non-infinitesimal, which we
define precisely as entirely ε-blocked (see Definition 3), complementary to the
notion of ε-goodness [25] on the free space. An entirely ε-blocked obstacle region
is necessary to obtain sufficient samples to learn the manifold.

Unlike the conventional definition of completeness, where a positive or negative
result must be returned in finite time, our analysis shows that the previously
proposed algorithm returns a plan or an infeasibility proof in the limit. To describe
this property, we propose the term asymptotic completeness for convergence to
either a motion plan or an infeasibility proof as the number of samples increases.

In this work, we consider kinematic motion planning problems without differ-
ential constraints. We assume that infeasibility is only caused by the obstacle
region and configuration space limits. That is, we do not consider steering func-
tions [30], dynamics [17], or implicit constraints [4,27]. This assumption is valid for
many scenarios, including purely kinematic movement of robot arms. Infeasibility
proofs for more general cases remain part of our future work.

2 Related work

Sampling-based motion planners are widely used for high-dimensional motion
planning problems [1,12,13,19,21,23,26,28,29,31,35,42,43]. Many sampling-based
planners offer probabilistic completeness and exponential convergence in the
number of samples, effective properties for cases when there is a feasible plan [33].
However, if there is no plan, these algorithms run until timeout without any
guarantee on plan non-existence. This drawback creates challenges for the appli-
cation of sampling-based planners in higher level planning problems [3,9,15,41].
In this paper, we analyze convergence of infeasibility proofs for the framework
presented in [34], addressing the other side of the story for completeness.

Previous works have addressed different aspects of infeasibility proofs. Some
previous work addressed motion planning infeasibility proofs for single objects.
[46] proves path non-existence for single, rigid objects in a 2D or 3D workspace
with the notion of caging, which applies to stable grasping of robot hand. [2]
considers the simplified problem of a rigid body passing through a narrow gate
with a discretized orientation of the object. These works do not have completeness
guarantees.

Other works offer complete motion planning based on space decomposition.
[37] decomposes the obstacle region into alpha-shapes and then queries the
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connectivity of two configurations. [47] and [48] combine cell decomposition with
a probabilistic roadmap (PRM). These algorithms are resolution-complete due
to the underlying cell decomposition.

There are also exact algorithms based on cell decomposition. Vertical cell
decomposition [11] works on lower dimensional (2D and 3D) configuration spaces
with piecewise linear obstacle regions. Cylindrical algebraic decomposition [10]
works on general configuration spaces defined by semi-algebraic sets. Planning
with roadmaps generated from these decompositions is complete. However, there
are challenges to represent the configuration space exactly, especially for higher
dimensional manipulators [32].

Deterministic sampling-based motion planning provides certain guarantees
on plan non-existence [8,20]. Using low-dispersion sampling strategies, if such a
planner does not find a plan, then either no solution exists or a solution exists
only through some narrow passage. However, these algorithms are not complete
since the infeasibility guarantee of low-dispersion sampling is not definite.

Visibility [45] and sparsity [16] based planners also provide some infeasibility
information. These methods add sampling configurations to a roadmap only
when the configurations improve the planning graph in certain ways. Planning
terminates when no further configurations can be added for a certain number
(M) of consecutive samples, and the percentage of the free space not covered by
the roadmap is estimated as 1/M , so that if no plan is found when the algorithm
terminates, the problem may be considered to be infeasible [40]. However, these
methods do not prove plan nonexistence definitively since the percentage of not
covered free space approaches 0 but can never be 0 exactly. In contrast, this
paper analyzes convergence properties of [34] to show that the framework offers
a definite infeasibility proof in the limit.

To summarize, this paper extends [34] to now prove that the learned manifold
converges exponentially to a definite infeasibility proof with increasing samples.
For this property of returning positive or negative results in the limit, we propose
the term asymptotic completeness (see Definition 7).

3 Problem Definition

A motion planning problem consists of a configuration space C of dimension n, a
start configuration qstart, and a goal configuration qgoal [32]. The configuration
space C is the union of the closed set obstacle region Cobs and the open set free
space Cfree.

A feasible plan is defined as a path σ such that σ[0, 1] ∈ Cfree, and σ[0] = qstart,
σ[1] = qgoal. The solution to the motion planning problem is a feasible plan if
one exists, or an infeasibility proof if no motion plan exists.

3.1 Infeasibility Proofs

We define an infeasibility proof as a closed manifold that is contained entirely in
Cobs and that separates the start qstart and goal qgoal [34].
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Definition 1: Infeasibility Proof

A manifold M in C defined by a continuous function f(q) = 0 is an
infeasibility proof if and only if,

(I) M is a closed manifold,
(II) M separates the start and the goal, f(qstart)f(qgoal) < 0,

(III) M is contained entirely in Cobs, ∀f(q) = 0, q ∈ Cobs.

No plan exists if and only if there exists an infeasibility proof according to
Definition 1; the proof is in [34]. We note that the proof manifold in Definition 1
may be either a smooth or piecewise manifold in the configuration space.

3.2 Configuration space requirements

Compared to typical sampling-based motion planners, we introduce additional
requirements on the configuration space to robustly construct infeasibility proofs
and support our analysis.

First, we must add a requirement to Cobs, which is similar to the requirements
on Cfree for robustness and probabilistic completeness of sampling-based planners.
ε-goodness addresses the need for an adequately large open space anywhere in
Cfree [25]. Similarly, δ-clearance provides for a robustly feasible path, which is
necessary for probabilistic completeness to ensure the possibility of sampling in
narrow spaces of Cfree [23]. We now introduce an analogous notion that applies
to Cobs.

Definition 2: ε-blocked

We say a state q in Cobs is ε-blocked for any ε > 0, if a closed ball with
radius ε centered at q is contained entirely in Cobs.

Definition 3: Entirely ε-blocked

We say Cobs is entirely ε-blocked if for any q in Cobs, there exists a neigh-
boring configuration p within ε distance of q, such that p is ε-blocked.

The following definitions and proofs in this paper assume an entirely ε-blocked
Cobs. The ε-blocked property ensures sufficient “thickness” of the obstacle region
to sample and construct an infeasibility proof in Cobs. If any region in Cobs
is not ε-blocked, then the probability of sampling configurations necessary to
construct an infeasibility proof in those regions would be zero. Theoretically, the
proof manifold can be contained in such infinitesimal regions, but our current
approaches cannot find such manifolds. We claim that the requirement for an
entirely ε-blocked Cobs is acceptable for many robot manipulators because physical
obstacles have nonzero volume.
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Second, our analysis tightens the typical requirement of sampling-based
planners to have a metric space. Instead, we assume the configuration space
is a Euclidean space: configurations are real-valued vectors with a Euclidean
distance metric. This is necessary since we need a manifold in Euclidean space
for the triangulation step (refer to subsection 3.3). We claim the restriction
to a Euclidean configuration space is acceptable for many robot manipulators
where configurations are defined by joint angles; considering inner hardware
arrangements (e.g., cabling) and outside physical environment, joint angles θ and
θ + 2kπ, for integer k, are often not equivalent.

Finally, the configuration space boundaries (e.g., joint limits) are a special
case of Cobs. We treat the boundaries as fixed obstacle regions with a positive
thickness to ensure the existence of M in general. We discuss how to deal with
joint limits in more detail in subsection 4.2.

3.3 Summary of Infeasibility Proof Algorithm

We summarize the key points of the infeasibility proof algorithm in [34] before
proceeding to the analysis in section 4. Please refer to [34] for more details.

Fig. 1: Algorithm overview. The red block shows the infeasibility proof construc-
tion, which runs in parallel with a PRM planner.

3.3.1 Learn a Manifold Figure 1 shows the overall algorithm structure, which
runs in parallel a sampling-based planner and the infeasibility proof construction,
terminating with either a plan or an infeasibility proof. We start the infeasibility
proof by learning a manifold using available sampled configurations. Compared
to [34], which used RRT-connect as the sampling-based planner, this paper
and analysis use a Probabilistic Roadmap (PRM) planner. RRT-connect is a
bidirectional planner that grows two trees from the start and the goal. In contrast,
a PRM is multi-directional. PRM construction samples all areas of the free space
and includes all valid Cfree samples in a graph, which applies to configuration
spaces with multiple free space components. When Cfree is disconnected, the
PRM planner constructs a graph of free space configurations that has multiple,
disconnected components (see supplementary material for an example comparing
PRM with RRT-connect). We learn the manifold using supervised learning.
The sampled configurations are the training data. Configurations in the graph
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component containing the goal configuration are one class, and all configurations
in other components are another class. Then, we train a two class classifier.
Here, we use a support vector machine (SVM) with Radial Basis Function (RBF)
kernel. Other classifiers may also fit within this framework, but the SVM has
some notable benefits which we will discuss in subsection 4.1.

According to Definition 1, the manifold must be closed, continuous, and
entirely in Cobs. In section 4, we prove the learned manifold converges to meet
these requirements with enough Cfree samples. This convergence property is
essential to all following steps.

3.3.2 Validate the Manifold After learning the manifold, we must verify
that it is entirely in Cobs. Directly proving that a manifold is inside an implicitly
defined space (Cobs) is difficult, so the idea is to tessellate the manifold, construct
a reassembling polytope, then check that the polytope is entirely in Cobs. For the
tessellation, we sample points on the manifold and then use these points to con-
struct a triangulation of the manifold with tangential Delaunay complexes [5,6].
The tangential Delaunay complexes construction requires a boundary-less under-
lying manifold. This triangulation step returns a polytope that approximates the
manifold. Then, we check each facet of the polytope to prove it is entirely in Cobs.

To summarize, our algorithm runs the multi-directional search and infeasibility
proof construction in parallel. The proof construction learns a manifold and then
checks whether the approximating polytope is contained in Cobs. Next, we analyze
the probability of the learned manifold becoming an infeasibility proof. In this
paper, we focus on analysis of the learning part, the validation steps analysis is
part of future work.

4 Convergence Analysis

In this section, we prove that the probability of the learned manifold being an
infeasibility proof converges to one as more configurations are sampled in Cfree
and that convergence is exponential with the number of sampled configurations.

4.1 Requirements on the learning method

The infeasibility proof manifold is the decision boundary of a supervised learner.
We summarize three requirements on the learning method, which is necessary
for our proof of convergence.

First, the learning method must find a boundary-less manifold. This re-
quirement is necessary for the manifold to satisfy Definition 1 (I). In our im-
plementation [34], the triangulation algorithm [5] also requires a boundary-less
manifold.

Second, the learning method must be able to find a decision boundary that
completely separates the training data given that the data is separable. In other
words, the learning method is flexible enough to fit all curvatures of the two
classes’ boundaries to achieve an accuracy of one on the training data. Unlike
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a typical machine learning classification problem, over-fitting to training data
is actually desirable in this case to completely separate the components of the
configuration space. This requirement corresponds to Definition 1 (II).

Third, the learned manifold must be at least d distance away from any training
data points, where d is a positive number. This requirement is necessary to “push”
the manifold into Cobs to obtain the proofs in the following subsections. We use
this requirement as a condition to prove that the manifold eventually satisfies
Definition 1 (III). A positive d distance is possible because we require Cobs to
be entirely ε-blocked (Definition 3). If Cobs is not entirely ε-blocked, at the place
where Cobs becomes arbitrarily “thin”, the two training classes’ points could be
arbitrarily close to each other, so a positive d distance cannot be maintained by
any learning methods that completely separates the two classes.

Our implementation [34] uses a Radial Basis Function (RBF) kernel Support
Vector Machine (SVM) to satisfy these three requirements. For the first require-
ment of a boundary-less manifold, the SVM directly provides a closed-form,
differentiable, boundary-less function for the learned manifold. For the second
requirement of complete separation, RBF kernel SVM has a hyper-parameter,
the variance γ, which we can tune to achieve the necessary level of over-fitting
(complete separation of training data). For the third requirement of positive
distance from training data, the SVM enforces a margin between the two classes.
In our case, the margin and d depends on the “thinnest” place of Cobs.

4.2 Preliminary Definitions

We separate the configurations in the PRM into two classes to produce the training
data. The first class contains all the configurations that are connectable to qgoal,
and the second class contains all other configurations. With this classification,
we aim towards learning an infeasibility proof that encloses the goal region
(Definition 4). Alternatively, we could learn an infeasibility proof that encloses
the start region, and the following definitions and proofs would proceed similarly.

Definition 4 (Goal Region). The goal region Cgoal is the connected component

of Cfree that contains qgoal.

If no plan exists, then qgoal and qstart must be completely separated, i.e.,
qstart /∈ Cgoal. There are two cases that may cause this separation. In the first
case, the separation is caused only by the obstacle region. In the second case, the
separation is caused by a combination of the obstacle region and the configuration
space boundaries.

To support learning the manifold and combine these two cases, we treat the
configuration space boundaries as part of Cobs as stated in section 3. For the
learning method to work for all kinds of configuration spaces, we define a region
of virtual Cfree to enclose the configuration space boundaries’ obstacle region
(see Figure 2). The virtual Cfree regions and the configuration space boundaries’
obstacle regions also need to be sampled.

Based on this modified configuration space, when qgoal and qstart are separated
by Cobs, the configuration space has three disconnected components: the goal
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Fig. 2: Changes made to the configuration space boundaries to unify joint limits
and Cobs. With these modifications, we can treat the joint limits as a special
obstacle region for the sake of learning the infeasibility proof.

region Cgoal, the obstacle region Cobs, and the rest of the configuration space
Crest. Cgoal is a connected component according Definition 4. Cobs and Crest are
not necessarily connected components.

Next, we define the inner boundary and the outer boundary, which we will
use for our convergence proof. Let U(r, p) be a hyper-ball region centered at p
with radius r.

Definition 5 (Inner Boundary (IB)). The inner boundary is union of all

configurations on Cobs boundaries such that there exists an arbitrarily small

neighborhood U of the configuration that intersects the goal region,

IB = {p ∈ Cobs | U(r, p) ∩ Cgoal 6= ∅, ∀r > 0} .

Intuitively, the inner boundary consists of the obstacle region boundaries that
are in contact with the goal region Cgoal. Similarly, we define the outer boundary.

Definition 6 (Outer Boundary (OB)). The outer boundary is union of

all configurations on Cobs boundaries such that there exists an arbitrarily small

neighborhood U of the configuration that intersects Crest,

OB = {p ∈ Cobs | U(r, p) ∩ Crest 6= ∅, ∀r > 0} .

Intuitively, the outer boundary consists of the obstacle region boundaries that
are in contact with rest of the configuration space Crest.

4.3 Proof of convergence

In this section, we prove that the probability of the learned manifold fulfilling
the three requirements of an infeasibility proof defined in Definition 1 converges
to one. Definition 1 (I) is satisfied by Lemma 2, Definition 1 (II) is satisfied by
Proposition 1, and Definition 1 (III) is satisfied by Lemma 1. All following proofs
are based on uniform sampling.

First, we address Definition 1 (II), ensuring that the learned manifold separates
qstart and qgoal.

Proposition 1. The learned manifold always separates qstart and qgoal.
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Proof. The separation of qstart and qgoal is a consequence of our requirement on
the learning method in subsection 4.1. We assign qstart and qgoal to two different
classes in the training data, so the requirement of a decision boundary that fully
separates the training data ensures separation of qstart and qgoal. ⊓⊔

Ri regions

Inner boundary

Outer boundary

Samples in Ri

Learned Manifold

Obstacle region

Fig. 3: Illustration of conver-
gence proof in Lemma 1.

Second, we address Definition 1 (III) by
proving that the probability of the learned
manifold being entirely in Cobs converges to
one. We prove this convergence based on re-
gions that, when sampled, are sufficient to
learn the manifold contained in Cobs. Then, we
calculate the probability of failing to sample
in all such regions for N sampled configura-
tions, which converges to 0 as N gets larger.
This approach parallels the convergence anal-
ysis of PRMs in [24], only we now analyze the
convergence of infeasibility proofs.

Lemma 1. The probability of the learned manifold being entirely in Cobs con-

verges to one as the number of sampled configurations in Cfree approaches infinity.

Proof. Based on the value of d described in subsection 4.1, we define a “coast”
region Cr in Cfree close to IB and OB,

Cr = {p ∈ Cfree | ‖p− q‖ < d ∧ q ∈ IB ∪OB} . (1)

We decompose coast Cr into a set of small regions Ri such that
NR
⋃

i=1

Ri = Cr.

The number NR depends on the smoothness of the coast. If the coast region is
more complex, we need a finer decomposition and NR needs to be larger. We
decompose Cr finely enough such that when there is at least one configuration
sampled in each Ri, the learned manifold cannot escape out of the Ris since the
learned manifold must completely separate the samples (Figure 3). With the
entirely ε-blocked requirement, a Lipschitz continuous manifold must exist in
Cobs, hich we can fit with a bounded, finite number of support vectors, so we
claim Nr is a finite number.

According to the requirements on the learning method in subsection 4.1,
the manifold must be at least d away from any data points. We also know that
configurations sampled in each Ri are always less than d away from IB or OB
by the definition of Cr. Combining these two conditions, if there is at least one
configuration sampled in each Ri, it forces the learned manifold to be entirely in
Cobs. If some of the Ris contains no configurations, the learned manifold may not
be contained in Cobs. We note the probability that some of the regions are empty
as Pfailure; then, Psuccess is the probability that every region has at least one
sampling configuration. When N configurations are sampled in Cfree, we calculate
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Pfailure as follows::

Pfailure ≤ Pat least one of the Ris is empty

= PR1 is empty + PR1 is not empty ∗ (PR2 is empty

+ PR2 is not empty ∗ (PR3 is empty + . . .))

≤
NR
∑

i=1

PRi is empty =

NR
∑

i=1

(

1−
V (Ri)

V (Cfree)

)N

.

(2)

For a given motion planning problem, NR is a fixed number, V is a mea-
surement for the sampling region volume, the probability of sampling in Ri is
V (Ri)/V (Cfree) since we are assuming uniform sampling and each V (Ri)/V (Cfree)
is a number between 0 and 1. When N satisfies N > Nr and approaches infinity,
Pfailure’s upper bound approaches 0, so Pfailure approaches 0. Then, we know
Psuccess = 1− Pfailure approaches 1. ⊓⊔

Third, we address Definition 1 (I) by proving that the learned manifold is a
closed manifold when it is entirely in Cobs.

Lemma 2. The probability of the learned manifold being closed converges to one

as the number of sampled configurations in Cfree approaches infinity.

Proof. We prove by contradiction, based on the requirements on the learning
method in subsection 4.1 and Lemma 1. Assume that the probability of learning
a closed manifold does not approach one. We require the learning methods to
produce a manifold without boundary. If the manifold is open and boundary-
less, the manifold would eventually escape from the finite obstacle region in
the configuration space we defined, but Lemma 1 states the probability of the
manifold being in Cobs approaches 1. Contradiction, the learned manifold must
converge to a closed manifold. ⊓⊔

Theorem 1: Convergence

If no motion plan exists, then the probability that the learned manifold
is an infeasibility proof converges to one as the number of sampled
configurations in Cfree approaches infinity.

Proof. Combining Proposition 1, Lemma 1, and Lemma 2, we conclude that as
the number of sampled configurations in Cfree approaches infinity, the probability
that learned manifold satisfies all three conditions of Definition 1 converges to
one. Thus, the learned manifold becomes an infeasibility proof. ⊓⊔

A complete motion planner returns a plan or reports plan non-existence in
finite time. As we can see in the above analysis, learning of the infeasibility proof
guarantees a probability of success approaching one as the number of sampled
configurations approaches infinity, but at the same time, it does not guarantee
a finite time result. This property is different from the definition of a complete
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motion planner. It is also different from the definition of a probabilistically

complete motion planner, since probabilistically complete motion planners never
terminate (they may “time-out”) when no plan exists. Based on these differences,
we propose a different term, asymptotically complete motion planning.

Definition 7: Asymptotic Completeness

A motion planner is asymptotically complete if the probability to return
a plan or correctly report plan non-existence converges to one as the
number of sampled configurations approaches infinity.

The algorithm in [34] is asymptotically complete if validation step of the
learned manifold always produces correct results given long enough time. In
this paper, we focus on proving the learning part’s convergence. The validation
step’s error depends on the triangulation step. According to [5] (Theorem 8.18),
the triangulation with tangential Delaunay complexes has a bounded error
which is parameterized by the sampling density. This means if we sample more
points on the manifold, then the difference between the learned manifold and
the triangulation becomes smaller, which would eventually generate a polytope
entirely in Cobs. A rigorous proof of the validation step is part of future work.

4.4 Proof of Exponential Convergence

Next, we analyze the rate of convergence and prove that the learned manifold
converges exponentially to an infeasibility proof with the number of sampled
configurations. Specifically, we prove that when no plan exists, Pfailure decreases
exponentially with the number of configurations sampled in Cfree. Extending the
proof of Lemma 1, we calculate Pfailure more precisely given the probability of
sampling each of Ri regions. By viewing sampling as a sequence of independent
trials, the convergence problem follows a binomial distribution. This approach
parallels the exponential convergence proof for RRTs in [33], only we now show
exponential convergence for infeasibility proofs.

Theorem 2: Exponential Convergence

If no motion plan exists, then the probability that the learned manifold
is not an infeasibility proof after N configurations are sampled in Cfree
is at most Ce−

1

2
Np, where C and p are constants.

Proof. Using uniform sampling, let the probability of sampling a configuration
in Ri be pi, then

pi =
V (Ri)

V (Cfree)
≥

V (Rmin)

V (Cfree)
, (3)

where Rmin is the smallest Ri region.
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Then, p = V (Rmin)/V (Cfree) is a lower bound of sampling in any region Ri.
After N configurations are sampled in Cfree, according to the binomial distribution
model, we have

Psuccess ≥

(

N

NR

)

pNR(1− p)
N−NR , (4)

where NR is the number of Ri regions.
According to Chernoff bound on binomial distribution, P (X ≤ (1− δ)µ) ≤

e−µδ2/2, where µ is the Binomial distribution’s expected value, δ is a value
between 0 and 1. In our case, µ = Np. Here we want to calculate Pfailure, which in
Binomial distribution model form is P (X ≤ (NR−1)). Let δ = 1− (NR−1)/µ =
1 − (NR − 1)/Np, when N is large enough, δ is between 0 and 1, we have the
following,

Pfailure ≤ P (X ≤ (1− δ)µ)

≤ e−µ(1−(NR−1)/µ)2/2 = e−Np/2+(NR−1)−(NR−1)2/(2Np)

≤ e−N p

2
+(NR−1) =

(

eNR−1
)

(

e−
1

2
Np

)

.

(5)

Here, NR and p are constants for a given motion planning problem, so Pfailure

has an upper bound of Ce−
1

2
Np, where C is a constant. ⊓⊔

Theorem 2 shows that Pfailure decreases exponentially with respect to the
number of configurations in Cfree. In other words, the probability of the manifold
becoming an infeasibility proof converges exponentially with the number of
configurations sampled in Cfree.

The Ri regions come from a decomposition of the coast areas along IB and
OB. This means if more configurations are sampled close to Cobs, so that IB
and OB is closely “covered” by sampled configurations, then the manifold is
more likely to converge, i.e., converges faster. For this reason, sampling methods
that find configurations close to Cobs, such as Gaussian sampling [7], would offer
faster convergence. We compare uniform and Gaussian sampling for manifold
convergence in the experiments.

5 Experiments

In this section, we demonstrate Theorem 1 and Theorem 2 through experiments
that learn the manifold with increasing number of sampled Cfree configurations.
We also compare uniform and Gaussian sampling to show the effect of different
sampling distributions on manifold convergence.

We run experiments on two 2-DoF scenes (see Figure 4a) to visualize the
impact of uniform vs. Gaussian sampling (sampling standard deviation is 0.1)
and, and we run experiments for a 4-DoF manipulator (see Figure 4b) to validate
the results on a practical (SCARA [36]) robot. We run 50 trials for each scene,
where each trial increases the number of samples used for training and attempts
to construct the infeasibility proof. Figure 5 shows the resulting success rates as
the number of samples increase.
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(a) 2 DoF scenes and the learned manifold.
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(b) 4 DoF scene.

Fig. 4: (a) 2-DoF scenes illustrating uniform vs. Gaussian sampling. (I) 800
uniform samples. (II) 800 Gaussian samples. (III) 300 uniform samples. (IV) 300
Gaussian samples. (b) 4-DoF scene using a SCARA [36] manipulator.

In Figure 5, we see that the ratio of successful infeasibility proofs approaches
one with the increasing numbers of samples in Cfree, which supports Theorem 1,
that the learned manifolds converges as more configurations are used for training.
We can also see that the success rate approaches one exponentially (see Figure 5c,
dotted grey line is a fitted 1 − b ∗ e−ax function as a comparison, here a =
2.202782 ∗ 10−5, b = 1.442954), which support Theorem 2, that the manifold
converges exponentially.

Comparing Gaussian sampling with uniform sampling, as Figure 4a shows,
Gaussian samples are close to Cobs while uniform samples are randomly dis-
tributed. In Figure 5a and Figure 5b, the blue line shows percentage of converged
manifolds in 50 runs using Gaussian sampling, and the red line shows the results
using uniform sampling. In the star scene (Figure 5a), all manifolds converges
with 1600 configurations using Gaussian sampling, while some cases of uniform
sampling are still not converged with 12800 configurations. In the maze scene,
all Gaussian sampling cases converges at 800 configurations, while uniform sam-
pling requires 3200 configurations to have the same percentage. These results
supports our previous analysis that Gaussian sampling produces faster manifold
convergence (subsection 4.4).

In addition, we see from Figure 5a and Figure 5b that the star scene needs more
samples to converge in general. More samples are needed because the star-shaped
obstacle has more sharp curves and thus needs a finer decomposition around the
obstacle region’s boundaries (more Ri regions). In the actual algorithm of [34], the
manifold would converge with fewer samples because after we calculate manifold
points, we heuristically add the manifold points in Cfree back for training. These
manifold points drive the learned manifold into Cobs faster since they are likely
to be close to Cobs. For example, in the star scene, the manifold points would
exist at the inner star tips’ curves, which would help retrain the manifold.
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(b) The maze scene
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(c) The 4 DoF manipulator

Fig. 5: Manifold converges as the number of samples increase. Comparing uniform
sampling and Gaussian sampling, Gaussian sampling converges faster with respect
to the number of configurations. 4-DoF scene uses Gaussian Sampling.

6 Conclusion and Discussion

We have proven that the learned manifolds converge exponentially to an infeasi-
bility proof in the number of sampled configurations. To formalize the convergence
analysis, we introduced two important concepts, ε-blocked and asymptotic com-

pleteness. Our analysis is supported by experiments showing success rates for
increasing numbers of samples and comparing uniform and Gaussian sampling.

While the probability of the learned manifold being in the obstacle region
converges to one with increasing samples, the algorithm to construct the infeasi-
bility proof cannot immediately determine whether or not the manifold is in the
obstacle region. Thus, after learning the manifold, we must validate that it is
in the obstacle region. In our current implementation, validating the manifold
dominates running time. Addressing this manifold validation is an important
area of future work.

Furthermore, our current algorithm and analysis are limited to kinematic
motion planning. Extending to a broader range of motion planning problems is
part of future work.
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