
RSS 2022 Workshop on Implicit Representations for Robotic Manipulation

Learning Explicit Infeasibility

from Implicit Configuration Space Connectivity

Sihui Li

and Neil T. Dantam

Department of Computer Science

Colorado School of Mines

Golden, Colorado 80401, USA

Abstract—Sampling-based algorithms generate plans using
samples from implicit representations of high dimensional config-
uration spaces. These samples contain unexploited information,
which can be use to build a better understanding towards the
configuration space’s connectivity. We aim to use these samples
as data to learn explicit infeasibility proofs. Previous work has
shown success in up-to 4 DoF manipulation scenes. In this work,
we focus on improving the learning step of the previous algorithm
and show experimental results on a 5-DoF manipulator.

I. INTRODUCTION

High dimensional motion planning problems often have an

implicit representation of configuration space connectivity. For

example, in sampling-based motion planners [1, 6, 11, 12,

15, 16, 19], we usually setup validity checkers to implicitly

separate the free space and the obstacle region of a configuration

space. For high degrees of freedom (DoF) manipulators, this

representation efficiently links the 3D workspace scenes with

the high dimensional configuration space.

Understanding the configuration space is important for

motion planning. Earlier works have developed methods to

explicitly define a configuration space [25]. However, such

explicit representations are limited to lower dimensions and

translational movements. Sampling-based motion planners

generate samples while searching for path in the implicitly

represented configuration space. These samples are data con-

taining information of the original configuration space. The

purpose of this research is to apply learning methods to the

data points (configuration space samples) in order to gain a

better understanding of the configuration space.

Given a motion planning problem configuration space, an

important question we want to understand is whether there

exists a collision free path connecting the start and the goal. A

complete motion planner answers this question and produces

a valid path in finite time [20]. In previous work [23], we

approach this question by constructing an infeasibility proof in

a configuration space using the sampled points from a sampling-

based motion planner. The infeasibility proof is a closed

manifold that exists in the obstacle region of the configuration

space and separates the start and the goal. We first learn the

manifold using the sampled points as data, then triangulate

the manifold to prove its containment in the obstacle region.

Existence of the infeasibility proof prevents any collision free

path between the start and the goal, thus making the sampling-

Fig. 1: Algorithm overview [24]. The red block shows the

infeasibility proof construction, which runs in parallel with a

PRM planner.

based motion planner complete in the limit. This algorithm

scaled up-to 4-DoF manipulators.

Our current goal is to scale our algorithm to higher dimen-

sions. However, applying it to 5-DoF manipulators reveals

issues in the learning process not present in lower-dimensional

spaces. In this abstract, we generalize the previous algorithm

to improve learning for higher DoF manipulators and propose

future directions to scale further. Learning has previously

been applied to feasibility of planning. Some works [29, 8]

learn classifiers to predict motion planning feasibility from

object features or visual inputs. However, these approaches

produce estimations of motion feasibility, which is not a

definitive answers. Our algorithm framework aims for definite

infeasibility results.

II. PROBLEM DEFINITION

A motion planning problem consists of a configuration space

C of dimension n, a start configuration qstart, and a goal

configuration qgoal [20]. The configuration space C is the

union of the closed set obstacle region Cobs and the open set

free space Cfree. A feasible plan is defined as a path σ such that

σ[0, 1] ∈ Cfree, and σ[0] = qstart, σ[1] = qgoal. The solution

to the motion planning problem is a feasible plan if one exists,

or an infeasibility proof if no motion plan exists.

Definition 1 (Infeasibility Proof). A manifold M in C defined

by a continuous function f(q) = 0 is an infeasibility proof if

and only if,

1 of 5

RSS 2022 Workshop on Implicit Representations for Robotic Manipulation

(I) M is a closed manifold,

(II) M separates the start and the goal, f(qstart)f(qgoal) <
0,

(III) M is contained entirely in Cobs, ∀f(q) = 0, q ∈ Cobs.

III. ALGORITHM

A. Summary of Previous Algorithm

Figure 1 shows the overall algorithm structure, which runs

in parallel a sampling-based planner and the infeasibility proof

construction algorithm, terminating with either a plan or an

infeasibility proof. The first step is to learn a manifold using

available sampled configurations in Cfree. Compared to [23],

which used RRT-connect [21] as the sampling-based planner,

this abstract uses a Probabilistic Roadmap (PRM) planner [16].

We learn the manifold by setting up a binary classification

problem with the sampled Cfree configurations as the training

data. Configurations in the graph component containing the

goal configuration are one class, and all configurations in other

components are under the other class. For training, we use

a support vector machine (SVM) with Radial Basis Function

(RBF) kernel. BRF kernel SVM has many advantages, including

large margin, analytical form boundary function, and the ability

to fit any curvature with only one hyper-parameter that controls

over-fitting.

After training, we sample points on the manifold for

triangulation in the next step. We sample points on the manifold

by solving a nonlinear optimization problem for each point.

The learning process iterates between training and sampling

points on the manifold. If there are manifold points in Cfree,

we add these points back to the training data set and retrain

the manifold, until all manifold points are in Cobs. The top

part of Figure 2 shows this process.

After learning the manifold, we must verify that it is entirely

in Cobs. We first triangulate the manifold with tangential De-

launay complexes [2, 3] to construct a reassembling polytope,

then check that the polytope is entirely in Cobs by checking

each facet of the polytope with configuration space penetration

depth. If this checking succeeds, we have an infeasibility proof.

B. New Algorithm

When applying the previous algorithm on a 5-DoF manip-

ulator, the learning process cannot train successfully. In the

previous algorithm, as stated before, we add Cfree manifold

points back to the training set and retrain the manifold. In this

process, we must categorise the Cfree manifold points into either

of two classes, i.e., goal component or non-goal component.

We attempt to determine this by linearly interpolating the

manifold points with a set of its neighbors. If the manifold

point is connectable to one of its neighbors, then its class is the

same as its neighbor’s class. If we cannot find any connectable

neighbors, then we acquire more samples from the planning

graph. This process works for 4-DoF manipulator and would

theoretically work for higher DoF manipulators as well. In

practice, however, this linear interpolation would require dense

sampling of the configuration space in order to connect all

Learn Manifold

Sample Manifold points All manifold
points in Cobs

Add to Training

No

Points in Cfree

Learn Manifold

Manifold

Sample Manifold points All manifold
points in Cobs

Add to Training

No

Any
unclassified

points?

Yes

Add to PRM
sampler

PRM planner adds
unclassified points to
the planning graph

Manifold

Points in Cfree

Planning
graph

2

Previous Algorithm

Current Algorithm

1

Yes, continue to verification step

Yes, continue to verification step

Fig. 2: Algorithm updates overview. Part of the manifold

learning step uses the PRM planner to categorize points for

training.

difficult-to-determine manifold points to nearby samples. In

higher dimensions, this requires an exponential sampling time.

To accommodate fewer samples in higher dimension, we

propose an updated algorithm for training the manifold that

further couples learning and PRM sampling. Figure 2 shows

this change. We define a new sampler for the PRM planner.

When adding the manifold points to the training set, we save all

uncategorized points to a set. During sampling, the new PRM

sampler returns points from the uncategorized points set if the

points are not used previously. Otherwise, the sampler performs

normal uniform sampling. When the training and sampling

iteration cannot improve anymore (loop 1 in Figure 2), that is,

when we cannot categorize any of the Cfree manifold points,

the algorithm acquires more samples from the planning graph

(loop 2 in Figure 2). Since the uncategorized points become

samples of the PRM planner, they are marked as they are

part of the planning graph. These samples may or may not be

connectable to the existing PRM planning graph components.

If a sample is not connectable, then it becomes a separated

component of the planning graph.

The updated learning algorithm creates a stronger integration

between the sampling-based motion planner and the infeasibil-

ity proof construction. On the infeasibility proof construction

side, the learning step uses PRM’s ability to categorize points

(connect to a roadmap component, or become a separated

component of the planning graph) for training. On the planner

side, the new sampler employs the infeasibility proof by-product

(Cfree manifold points) as a sampling heuristic, which may

aid in solving motion planning problems involving narrow

passages. We discuss this further in future work.

IV. PRELIMINARY RESULTS

To test our updated algorithm, we setup a 5-DoF manipulator

scene as shown in Figure 3. The goal in this scene is to reach

2 of 5

RSS 2022 Workshop on Implicit Representations for Robotic Manipulation

(a) Start scene. (b) Goal scene.

Fig. 3: Experiment scenes

the back of the shelf from a start position outside of the shelf

with some obstacles in the front, which simplifies a real-world

scenario of reaching items in the back of a cluttered cabinet.

The manipulator has the similar kinematics to the widely-

fielded FLIR (formerly Endeavor Robotics and iRobot) 510

PackBot arm [27]. We run our experiments on a multi-core

system, a dual CPU AMD EPYC 7402 with 24 cores per CPU.

We adapt the PRM [16] in OMPL [5] to use the new sampler

and run in parallel with our infeasibility proof construction.

We solve the nonlinear optimization problems using sequential

least-squares quadratic programming (SLSQP) [13, 17, 18].

We train the manifold using LIBSVM [4]. We model robot

kinematics using Amino [7]. We determine ground truth for

plan non-existence to high-confidence for a scene by running

RRT-connect continuously for greater than 20 minutes.

As stated in Sec. III-A, when all manifold points are in

Cobs, we continue to the verification steps. For this preliminary

experiment, we want to see how long the learning step takes

for higher DoF manipulators, so we apply the updated learning

algorithm to the scene in Figure 3 and train until all manifold

points are in Cobs. Figure 4 shows the runtime distribution

among 50 runs. As we can see, most runs completed within

100 seconds. Table I shows more statistics on the runs. Training

the manifold and sampling points on the manifold are the two

major steps. On average, there are 61,702 points sampled on

the manifold, and they are all in Cobs by the end, which is

non-trivial amount of checks for the manifold’s existence in

Cobs. This experiment only covers the learning step, we discuss

improvements of the verification step as part of future work.

Runtime and Profiling Results

Total (s) Train (s) Sample (s) mani # training #

Mean 72.72 43.05 29.66 61,207 265,956

STD 59.24 51.94 8.94 3939 178,494

TABLE I: Runtime and profiling statistics.

V. DISCUSSION AND FUTURE WORK

On average, the training of the manifold takes about 60%

of the overall runtime of the learning step. Comparing with

experiments for lower-DoF manipulators, where the training

time is negligible, training in 5-DoF scenes takes much longer

due to a larger data set. To improve training time, one direction

of future work is to explore machine learning methods that train

50 100 150 200 250
Total Learning Step Runtime (s)

0

5

10

15

20

25

#
 o
f r

un
s

Fig. 4: Experimental result shows that the learning step for

5-DoF manipulator scenes take less than 100 seconds in most

runs.

faster and/or are more suitable for large data sets. Algorithms

for training a faster SVM has been proposed in previous

works [22]. Our current implementation uses single-core, CPU-

based learning [4], so another possibility is to use multi-core

CPUs and GPUs to accelerate training [30]. Also, training linear

SVM is faster than kernel SVM and but cannot be applied

to non-linear classification problems. Past work has explored

methods that use a combination of linear SVMs to approximate

non-linear boundaries [10, 26, 28, 31]. Neural-Network(NN)

models are also possible. Recent work has been developed for

training NN with large margins [9].

After the learning step, we also need to improve the verifica-

tion steps. In previous experiments for lower DoF manipulators,

the verification step takes the majority of overall algorithm

runtime [23]. For 5-DoF manipulators, the verification step

would take considerably longer using the previous algorithm.

One important step of verification is the triangulation. Exploring

faster triangulation methods would greatly improve our runtime.

Recently, we have found that Coxeter triangulation [14] could

be a good triangulation methods to use. Initial trials in 4-DoF

scenes reduce the triangulation time from the scale of 102

seconds to around 1 ∼ 5 seconds.

Besides the above discussions for infeasibility proof con-

struction, the proposed algorithm could also be beneficial for

searching a valid path. Even though the learned manifold may

not exist entirely in Cobs at the beginning, the manifold is

very likely to be largely in Cobs because we train it to classify

two groups of Cfree points. If there exist narrow passages

that connect the two classes of points, it is possible that the

unclassified manifold points would quickly reveal them. Then,

using the uncategorized manifold points as samples would

guide the planning graph towards narrow passages to find

a path. Effectiveness of this sampling heuristic in practice

requires more experiments.

ACKNOWLEDGMENTS

This work is supported in part by the National Science

Foundation under Grant No. IIS-1849348. We thank Dr.

Mehmet Belviranli for providing access to the multi-core server

used for evaluating the presented algorithm.

3 of 5

RSS 2022 Workshop on Implicit Representations for Robotic Manipulation

REFERENCES

[1] Nancy M Amato and Yan Wu. A randomized roadmap

method for path and manipulation planning. In Inter-

national Conference on Robotics and Automation1996,

volume 1, pages 113–120, 1996.

[2] Jean-Daniel Boissonnat and Arijit Ghosh. Manifold recon-

struction using tangential delaunay complexes. Discrete

& Computational Geometry, 51(1):221–267, 2014.

[3] Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette

Yvinec. Geometric and Topological Inference. Cam-

bridge University Press, 2018. URL https://hal.inria.fr/

hal-01615863. Cambridge Texts in Applied Mathematics.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A

library for support vector machines. ACM Transactions on

Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Software available at http://www.csie.ntu.edu.tw/∼cjlin/

libsvm.

[5] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The

open motion planning library. Robotics & Automation

Magazine, 19(4):72–82, 2012.

[6] Ioan Alexandru Şucan and Lydia E Kavraki. A sampling-

based tree planner for systems with complex dynamics.

IEEE Transactions on Robotics, 28(1):116–131, February

2012. ISSN 1552-3098. doi: 10.1109/tro.2011.2160466.

URL http://dx.doi.org/10.1109/tro.2011.2160466.

[7] Neil T. Dantam. Robust and efficient forward, differ-

ential, and inverse kinematics using dual quaternions.

International Journal of Robotics Research, 2020.

[8] Danny Driess, Ozgur Oguz, Jung-Su Ha, and Marc

Toussaint. Deep visual heuristics: Learning feasibility of

mixed-integer programs for manipulation planning. In In-

ternational Conference on Robotics and Automation2020,

pages 9563–9569, 2020. doi: 10.1109/ICRA40945.2020.

9197291.

[9] Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi,

Kevin Regan, and Samy Bengio. Large margin deep net-

works for classification. Advances in neural information

processing systems, 31, 2018.

[10] Zhouyu Fu, Antonio Robles-Kelly, and Jun Zhou. Mixing

linear svms for nonlinear classification. IEEE Transac-

tions on Neural Networks, 21(12):1963–1975, 2010.

[11] David Hsu, Robert Kindel, Jean-Claude Latombe, and

Stephen Rock. Randomized kinodynamic motion planning

with moving obstacles. International Journal of Robotics

Research, 21(3):233–255, 2002.

[12] Lucas Janson, Edward Schmerling, Ashley Clark, and

Marco Pavone. Fast marching tree: A fast marching

sampling-based method for optimal motion planning in

many dimensions. International Journal of Robotics

Research, 34(7):883–921, 2015.

[13] Steven G. Johnson. The NLopt nonlinear-optimization

package, 2022. http://github.com/stevengj/nlopt.

[14] Siargey Kachanovich. Meshing submanifolds using

Coxeter triangulations. PhD thesis, COMUE Université

Côte d’Azur (2015-2019), 2019.

[15] Sertac Karaman and Emilio Frazzoli. Sampling-based

algorithms for optimal motion planning. International

Journal of Robotics Research, 30(7):846–894, 2011.

[16] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H

Overmars. Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. IEEE Transactions

on Robotics, 12(4):566–580, 1996.

[17] Dieter Kraft. A software package for sequential quadratic

programming. Technical Report DFVLR-FB 88-28,

Institut für Dynamik der Flugsysteme, Oberpfaffenhofen,

July 1988.

[18] Dieter Kraft. Algorithm 733: TOMP–fortran modules for

optimal control calculations. Transactions on Mathemat-

ical Software (TOMS), 20(3):262–281, 1994.

[19] James J. Kuffner and Steven M. LaValle. RRT-connect:

An efficient approach to single-query path planning. In In-

ternational Conference on Robotics and Automation2000,

volume 2, pages 995–1001, 2000.

[20] Steven M LaValle. Planning algorithms. Cambridge

university press, 2006.

[21] Steven M. LaValle and James J. Kuffner. Randomized

kinodynamic planning. International Journal of Robotics

Research, 20(5):378–400, 2001.

[22] Boyang Li, Qiangwei Wang, and Jinglu Hu. A fast

svm training method for very large datasets. In 2009

International Joint Conference on Neural Networks, pages

1784–1789, 2009. doi: 10.1109/IJCNN.2009.5178618.

[23] Sihui Li and Neil T Dantam. Learning proofs of motion

planning infeasibility. In Robotics: Science and Systems,

2021.

[24] Sihui Li and Neil T. Dantam. Exponential convergence

of infeasibility proofs for kinematic motion planning. In

Workshop on the Algorithmic Foundations of Robotics,

2022.

[25] Tomas Lozano-Perez. Spatial planning: A configuration

space approach. In Autonomous robot vehicles, pages

259–271. Springer, 1990.

[26] Xue Mao, Ou Wu, Weiming Hu, and Peter O’Donovan.

Nonlinear classification via linear svms and multi-task

learning. In Proceedings of the 23rd ACM International

Conference on Conference on Information and Knowledge

Management, pages 1955–1958, 2014.

[27] Teledyne FLIR. Packbot 510. https://www.flir.com/

products/packbot/?vertical=ugs&segment=uis, 2022. [On-

line; accessed 22-May-2022].

[28] Di Wang, Xiaoqin Zhang, Mingyu Fan, and Xiuzi Ye.

Hierarchical mixing linear support vector machines for

nonlinear classification. Pattern Recognition, 59:255–267,

2016.

[29] Andrew Wells, Neil T. Dantam, Anshumali Shrivastava,

and Lydia E. Kavraki. Learning feasibility for task and

motion planning in tabletop environments. Robotics &

Automation Magazine, 4(2):1255–1262, 2019.

[30] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and

Jian Chen. ThunderSVM: A fast SVM library on GPUs

and CPUs. Journal of Machine Learning Research, 19:

4 of 5

https://hal.inria.fr/hal-01615863
https://hal.inria.fr/hal-01615863
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1109/tro.2011.2160466
http://github.com/stevengj/nlopt
https://www.flir.com/products/packbot/?vertical=ugs&segment=uis
https://www.flir.com/products/packbot/?vertical=ugs&segment=uis

RSS 2022 Workshop on Implicit Representations for Robotic Manipulation

797–801, 2018.

[31] Li Yujian, Liu Bo, Yang Xinwu, Fu Yaozong, and

Li Houjun. Multiconlitron: A general piecewise linear

classifier. IEEE Transactions on Neural Networks, 22(2):

276–289, 2010.

5 of 5

	I Introduction
	II Problem Definition
	III Algorithm
	III-A Summary of Previous Algorithm
	III-B New Algorithm

	IV Preliminary Results
	V Discussion and Future Work

