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Abstract

We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based

motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these

planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-

motion planning. We apply data generated during multi-directional sampling-based planning (such as PRM) to a machine

learning approach to construct an infeasibility proof. An infeasibility proof is a closed manifold in the obstacle region

of the configuration space that separates the start and goal into disconnected components of the free configuration

space. We train the manifold using common machine learning techniques and then triangulate the manifold into a

polytope to prove containment in the obstacle region. Under assumptions about the hyper-parameters and robustness of

configuration space optimization, the output is either an infeasibility proof or a motion plan in the limit. We demonstrate

proof construction for up to 4-DOF configuration spaces. A large part of the algorithm is parallelizable, which offers

potential to address higher dimensional configuration spaces.
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1 Introduction

Many high-level planning problems incorporate motion

planning as a subproblem (Ben-Shahar and Rivlin (1998);

Cambon et al. (2009); Ota (2004); Wilfong (1991)). A

complete motion planner would support such high-level

planning by not only finding plans when possible but also

deciding whether or not a plan is feasible. Most previous

motion planning work focused on finding a plan. In this

work, we seek to solve the other—less explored—side of the

completeness problem: finding infeasibility proofs in motion

planning.

Complete motion planning is challenging, and many

approaches aim for weaker notions of completeness.

Resolution complete planners offer completeness up to a

certain granularity or resolution level of the configuration

space. Typical resolution complete planners use a cell

decomposition, such as a grid-based approach. Resolution-

complete methods (Zhang et al. (2007, 2008)) are effective

in low-dimensional spaces, but decomposing and covering

a high-dimensional configuration space is usually too

expensive. Conversely, sampling-based motion planners

(LaValle (1998); Karaman and Frazzoli (2011); Kavraki

et al. (1996); Kuffner and LaValle (2000); Şucan et al.

(2012); Shkolnik and Tedrake (2011)) are widely used for

high-dimensional configuration spaces. These methods are

probabilistically complete, meaning if a feasible plan exists,

they find the plan given enough time. However, if a plan does

not exist, a probabilistically complete planner will run forever

or until a specified timeout (Karaman and Frazzoli 2011).

A timeout is not a guarantee of plan non-existence, but the

sampled points offer insight to generate such guarantees.

Previously, we proposed a general formulation to find

motion planning infeasibility proofs as polytopes in the

configuration space obstacle region that separate the start

and goal (Li and Dantam 2020). The key idea is to avoid

fully covering the configuration space and instead find only

a boundary—the polytope—that disconnects the start and

goal. However, combinatorial steps to directly construct

such polytopes pose challenges to practically scale to high-

dimensional manipulators. We now address this challenge by

incorporating learning.

We propose a novel framework to prove motion planning

infeasibility that integrates supervised learning and multi-

directional, sampling-based motion planning. Compared to

prior methods, this approach supports the configuration spaces

of robot manipulators and demonstrates better empirical

scalability to higher degree-of-freedom (DOF) motion

planning problems. Figure 2 outlines the framework. The

key insight is to use planning graph components as training

data by assigning different classes depending whether a

component includes the start point or the goal point. Then,

we train a classifier on these planning graph components

(see subsection 4.1). Geometrically, the decision boundary

of the classifier is a manifold that separates the classes—

i.e., planning graph components. Such a manifold proves

infeasibility when it is (1) closed, (2) entirely in the obstacle

region of the configuration space, and (3) separating the start

and goal configurations. That is, such a manifold is a proof

that part of the obstacle region completely separates the start
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and goal, which means that no motion plan exists. To verify

that the manifold is entirely in the obstacle region, we sample

points on the manifold (see subsection 4.2) and construct

a triangulation polytope to approximate the manifold using

the sampled manifold points (see subsection 4.3). Finally,

we prove that the approximating polytope is entirely in the

obstacle region by checking each facet of the polytope (see

subsection 4.4).

Figure 3 illustrates the two classes assigned to the planning

graph vertices, the learned manifold from the two classes,

points sampled on the manifold, and the polytope constructed

using the manifold points in a 2D maze-like configuration

space. The existence of such a manifold in the obstacle region

means the start and the goal are in separate components of

the free configuration space, thus proving the infeasibility for

the motion planning problem.

We make certain assumptions in this approach. If all

assumptions are met, the result is either a motion plan,

when one exists, or an infeasibility proof in the form

of the separating manifold. First, the current algorithm

applies to kinematic motion planning problems where

infeasibility is caused only by the geometric obstacle region

in the configuration space. Infeasibility motions caused by

differential constraints, such as the robot’s dynamics, are

not within the present scope and remain for future work.

Second, the algorithm depends on two hyper-parameters.

The first hyper-parameter is for training the manifold

(see subsection 4.1) and the second hyper-parameter is

used in the triangulation step (subsection 4.3). We must

choose proper hyper-parameters for the approach to work.

Assuming a kinematic motion planning problem and proper

hyper-parameters, our algorithm produces a motion plan or

infeasibility proof in the limit.

An initial version of this work appeared in Li and Dantam

(2021). We now extend that work to improve generality and

efficiency as follows:

• generalizing to configuration spaces with multiple,

disconnected free space components by using a

Probabilistic Roadmap (PRM) instead of a bidirectional

rapidly-exploring random tree (RRT-connect);

• parallelization of parts of the algorithm to reduce

overall running time;

• more efficient checking of polytope facets using a

minimum enclosing ball;

• more efficient handling of triangulation and facet

checking failures;

• additional experiments on up to 4-DOF configuration

spaces to show scalability of our algorithm.

We demonstrate this approach on up-to four-dimensional

configuration spaces of serial robot manipulators (see Figure 1

for one example). To the best of our knowledge, this is the first

approach to construct motion planning infeasibility proofs for

such serial manipulators in higher than three dimensions.

Start Goal

Figure 1. An infeasible motion planning problem for a four

degree-of-freedom SCARA (Makino 1982) arm.

Figure 2. Overview of sampling and learning framework. The

part in the red block is showing the infeasibility proof construction

steps.

Figure 3. Visualization of learned manifold for a 2D motion

planning problem. The learned proof manifold and the polytope

constructed from it separates the start and the goal.

2 Related work

2.1 Completeness

Varying notions of completeness exist for motion planning

algorithms (LaValle 2006). Generally, a complete planner

returns a plan or guarantee of plan nonexistence in finite

time. A resolution complete motion planner is complete

Li and Dantam
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up to a set resolution level of the configuration space. A

probabilistically complete motion planner returns a plan, if

one exists, in the limit. It is important to note that the failure

of a probabilistically complete planner to find a plan—i.e., a

timeout—is not a definite guarantee of infeasibility; such

timeouts may occur because the problem is infeasible or

simply because we need more time to find the plan. Compared

to these forms of completeness, our approach is complete in

the limit. That is, given enough time, our approach returns

either a plan or an infeasibility proof.

2.2 Sampling-based planning

Sampling-based motion planning is widely used for high-

dimensional motion planning (Amato and Wu 1996; Şucan

and Kavraki 2012; Hsu et al. 2002; Janson et al. 2015;

Karaman and Frazzoli 2011; Kavraki et al. 1996; Kuffner

and LaValle 2000; Ladd and Kavraki 2004; LaValle 1998;

Li et al. 2016; Otte and Frazzoli 2016; Plaku et al. 2005;

Shkolnik and Tedrake 2011). Many sampling-based planners

are probabilistically complete, but probabilistic completeness

does not provide guarantees on path non-existence. The

points sampled by those planners do, however, provide useful

information about the configuration space. RRT-connect

generate two trees, one rooted from the start configuration and

the other rooted from the goal configuration, which can be

used as training data to learn the free regions containing the

start and the goal in the configuration spaces (Li and Dantam

2021). PRM planners generate a graph covering the entire

configuration space, which is multi-directional. In this sense,

the graph from the PRM planner offers information about

the entire configuration space. In section subsection 4.1, we

describe our use of the planning graph in more detail.

2.3 Surface Triangulation

Surface triangulation is an important step in our algorithm.

We triangulate the manifold to prove containment in the

obstacle region. Surface triangulation is also an important

topic in the area of finite element analysis and computer

graphics. Previous work has successfully triangulated 3D

surfaces (Akkouche and Galin 2001; Hartmann 1998; Hilton

et al. 1997; Karkanis and Stewart 2001). However, most of

these algorithms are not scalable to higher dimensions, which

is necessary for our use case when extending to higher DOF

configuration spaces. In recent years, further development

in high-dimensional computational geometry tools have

enabled triangulation of high DOF manifolds (Boissonnat

and Ghosh 2014; Fogel et al. 2012; Halperin et al. 2017).

Particularly, Boissonnat and Ghosh (2014) provide an

algorithm to reconstruct a closed, differentiable manifold

using a set of sampled points on the manifold. This method

scales to higher dimensions, and we use this algorithm for

triangulation in subsection 4.3.

2.4 Plan Infeasibility

Some previous work addressed motion planning infeasibility

proofs for single objects. Varava et al. (2020) prove path non-

existence for single, rigid objects in a 2D or 3D workspace.

They approximate the obstacle region with a decomposition

into lower dimensional subsets and connected components

of those subsets. Using these components, they construct a

connectivity graph to query whether two configurations are

connected. Basch et al. (2001) consider the simplified problem

of a rigid body passing through a narrow gate. They discretize

the object’s orientation and test whether the object can pass

through the gate for each discrete orientation region. These

works focus on single objects in the Cartesian space rather

than the configuration space of robot manipulators.

Other works offer complete motion planning based on

space decomposition. McCarthy et al. (2012) decompose

the obstacle region into alpha-shapes and then query the

connectivity of two points; scalability to higher dimensions

depends on the computation of high-dimensional alpha-

shapes, which is still an open research question. Zhang et al.

(2007, 2008) combine cell decomposition with a probabilistic

roadmap (PRM), which offers resolution-completeness due

to the underlying cell decomposition. However, decomposing

the entire configuration space poses scalability challenges in

higher dimensions.

Deterministic sampling-based motion planning provides

certain guarantees on plan non-existence (Branicky et al.

2001; Janson et al. 2018). If such a planner using low-

dispersion sampling strategies does not find a plan, then

either no solution exists or a solution exists only through

some narrow passage. However, low-dispersion sampling

must largely cover the configuration space, and the result

is similar to resolution-completeness where the infeasibility

guarantee is not exact.

Visibility (Siméon et al. 2000) and sparsity (Dobson

and Bekris 2014) based planners also provide some degree

of infeasibility information. These methods add sampling

points to a roadmap if the points are useful for coverage,

connectivity, or path quality. Planning terminates when no

further points can be added for a certain number (M ) of

consecutive samples, and the percentage of the free space not

covered by the roadmap is estimated as 1/M . Thus, these

methods usually achieve high coverage of the free space. If

no plan is found when the algorithm terminates, the problem

may be considered to be infeasible (Orthey and Toussaint

2021). However, these methods do not definitely prove plan

nonexistence since they are based on covering a portion of

the free space. In contrast, our approach seeks to find definite,

exact infeasibility proofs through geometric methods.

Learning has previously been applied to feasibility of

planning. Wells et al. (2019) learn classifiers for motion

planning feasibility. Driess et al. (2020, 2021a,b) predict

feasibility information from images. Kuo et al. (2018) train

models with previous planning information and use learned

models in the steering function of RRT∗ (Karaman and

Frazzoli 2011) to guide new samples towards more feasible

directions. However, these prior approaches use learning

only as a heuristic estimate of feasibility. In contrast, our

approach tightly couples sampling-based planning and a

geometric interpretation of machine learning to produce

definitive infeasibility proofs.

To summarize, previous works on infeasibility proofs either

limit analysis to single objects, require decomposition of the

entire configuration space, or do not offer definitive plan

non-existence guarantees. The algorithm in this paper applies

to robot manipulators and only requires decomposition of a

manifold in the configuration space. The result, under stated

assumptions, is either a feasible plan or an infeasiblity proof.

Li and Dantam
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Our previous approach for infeasibility proof construction

in Li and Dantam (2020) proposed an algorithm to construct

a polytope in the configuration space obstacle region. First,

we generated a set of facets in the obstacle region. Then, we

identify the facets that form a closed polytope separating the

start and goal by solving a set of linear constraints. Facet

generation is computationally expensive, limiting scalability

to higher dimensions. Compared to Li and Dantam (2020), Li

and Dantam (2021) and this paper use learning to generate

an initial manifold. The learned manifold is a strong heuristic

for constructing the infeasibility polytope, offering better

scalability to higher dimensions.

2.5 Robot Planning and Motion Infeasibility

Motion planning feasibility is an important issue in many

robot planning approaches. Navigation among movable

obstacles (NAMO) must determine the feasibility of

motions—typically in a planar navigation space—to select

which obstacles to move (Stilman and Kuffner 2005, 2008;

Wilfong 1991). Similarly, rearrangement planning must

address feasibility to plan motions from one arrangement

of objects to another (Ben-Shahar and Rivlin 1998; Han et al.

2018; Huang et al. 2019; King et al. 2015; Ota 2009). Hauser

(2013, 2014) addresses a different aspect of infeasibility

by identifying minimal object sets or displacements that

ensure motion plan existence. Task and motion planning must

also address motion feasibility, such as through feasibility

checks (Cambon et al. 2009; Dantam et al. 2018; Dantam

2020b; Erdem et al. 2016; Garrett et al. 2021; Kaelbling and

Lozano-Pérez 2013; Lagriffoul and Andres 2016; Srivastava

et al. 2014; Thomason and Knepper 2019; Toussaint

2015; Vega-Brown and Roy 2020). Varying approaches

to handling feasibility significantly impact the guarantees

and performance of such algorithms. Some approaches

interpret failure to find a motion plan—e.g., timeout of

a sampling-based planner—to mean the motion planning

problem is infeasible (Dornhege et al. 2012; Rodrıguez

et al. 2019; Yalciner et al. 2017). Such assumed infeasibility

may offer heuristic benefits for certain scenarios, but the

probabilistic completeness of sampling-based planners means

this assumption may impact completeness of the overall

approach. Overall, these numerous planning approaches

relating to the feasibility of motion planning indicate that

proving infeasibility is a fundamental issue in robot planning.

New techniques addressing motion planning feasibility may

thus offer new insight into these areas.

We conduct the following motivating experiments to

illustrate issues that arise from interpreting a planner timeout

as plan infeasibility. We apply RRT-Connect (Kuffner and

LaValle 2000) to two feasible plan scenes. The environment

we use is similar to Figure 1, with the ball shaped obstacle

further from the target box to create room for valid plans.

Both scenes have narrow passages and are difficult to solve,

but one is easier than the other. We run 50 trials for each scene

and count the number of timeouts (interpreted as infeasibility)

given time limits from 100 seconds to 1200 seconds.

Figure 4 illustrates the timeout results. Fewer timeouts

occur as the time limit increases, as expected. However,

even in the easier scene, interpreting timeouts as infeasibility

produces incorrect results until a time limit of 1000 seconds.

In the harder scene, 60% of the trials still return incorrect
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Figure 4. The number of false infeasibility results (timeouts) for

different time limits on two feasible plan scenes, one easier and

one harder, similar to Figure 1. We run 50 trials for each scene.

results with a time limit of 1200 seconds. Consequently, the

accuracy of using a timeout to approximate plan infeasibility

depends on the problem and does not provide guarantees.

Choosing a proper time limit may also be challenging, even

for relatively simple scenes.

2.6 Feasibility Checking for Dynamic Systems

Prior work has also addressed the feasibility problem

for dynamic systems, often referred to as reachability

analysis (Lygeros et al. 1999; Bajcsy et al. 2019; Bansal

and Tomlin 2021). These works consider whether a state of

a dynamic system can be reached. This question is closely

related to safety verification, where the goal is to confirm

that a trajectory of a system do not enter unsafe regions.

Control barrier functions provide effective safety verification

by separating the safe and unsafe regions such that no

initial condition starting from a safe state can reach unsafe

states (Prajna and Jadbabaie 2004). Our method is similar

in spirit to control barrier functions in that we also provide

a definitive proof by separating different parts of the free

configuration space; however, our approach to construct

infeasibility proofs differs from typical approaches to create

control barrier functions. Previously, sampling-based motion

planning algorithms were also used for safety verification—or

rather falsification (Plaku et al. 2009). Our current algorithm

is only applicable to kinematic problems, but a possible

direction of future work would be to further address dynamic

constraints.

3 Problem Definition

We find infeasibility proofs for kinematic motion planning

problems. A motion planning problem consists of configura-

tion space C of dimension n, start configuration qstart, and

goal configuration qgoal (LaValle 2006). Configuration space

C is the union of the closed set obstacle region Cobs and the

open set free space Cfree. A feasible plan is a path σ such that

σ[0, 1] ∈ Cfree, σ[0] = qstart, σ[1] = qgoal. The output of our

approach is a feasible path if one exists, or an infeasible proof

if no path exists.

We define an infeasibility proof as a closed manifold which

is contained entirely in Cobs and that separates the start and

the goal.

Li and Dantam
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Definition 1. Infeasibility Proof. A manifoldM in C defined

by a continuous function f(q) = 0 is an infeasibility proof if

and only if:

(I) M is a closed manifold;

(II) M is contained entirely in Cobs, {q | f(q) = 0} ⊆
Cobs;

(III) M separates the start and the goal configurations,

f(qstart)f(qgoal) < 0.

We view the configuration space boundaries (e.g., joint

limits) as a special case of Cobs so that we can handle a

manifold that is partially outside of bounds in the same

way as a manifold that is entirely in Cobs. Specifically, we

regard boundaries as a virtual obstacle region with positive ǫ
thickness, and we define a region of virtual Cfree to enclose

the configuration space boundaries’ virtual obstacle region

(see Figure 5). The virtual obstacle region at the boundaries

and the virtual Cfree regions surrounding it are also sampled to

generate training data to learn the manifold. With this special

treatment to boundaries, now we can introduce the following

proposition.

Proposition 1. No plan σ exists if and only if there exists an

infeasibility proof according to Definition 1.

Proof. First, we prove by contradiction that if no plan σ
exists, there must exists an infeasibility proof M. Since

we only consider kinematic motion planning problems, Cobs
is the only reason that would result plan infeasibility. We

perceive the configuration space boundaries as a special kind

of obstacle region as described in the previous paragraph.

Assuming no such M exists, then it means the Cfree
components of qstart and qgoal are not entirely separated

by Cobs, thus there would exist a plan σ.

Second, we prove that if there exists an infeasibility

proofM, no plan σ exists. According to Definition 1 (III),

f(qstart) < 0 (> 0) and f(qgoal) > 0 (< 0), meaning qstart

and qgoal are on different sides of M. Also, because of

Definition 1 (I) and Definition 1 (II), M separates qstart

and qgoal into disconnected components of Cfree, and there is

no collision free path that connects qstart and qgoal. Thus, no

plan σ exists.

We note that the proof manifold in Definition 1 may be

either a smooth or piecewise manifold in the configuration

space. In our algorithm, we first learn a smooth manifold.

Then to check that the manifold is entirely in obstacle region,

we use a polytope to approximate the learned manifold,

which can be viewed as a piecewise manifold. The resulting

infeasibility proof is actually the approximating polytope,

since we do not directly prove that learned manifold is entirely

in the obstacle region.

Requirements and Assumptions

To ensure successful construction of an infeasibility proof,

we must add additional requirements to the obstacle region

of the configuration space. Consider a 3-DOF configuration

space where part of the obstacle region is a surface with

zero thickness, e.g., an infinitesimal sheet of paper. The

probability of finding samples to learn a manifold inside

Figure 5. Changes made to the configuration space boundaries

to unify joint limits and Cobs. With these modifications, we can

treat the joint limits as a special obstacle region.

this infinitesimal obstacle region is zero since that part of

the obstacle region has zero volume. This counterexample

leads to a requirement for Cobs: everywhere in Cobs must have

positive volume—i.e., the obstacle region must have some

“thickness.” Theoretically, the proof manifold could exist

in infinitesimal, zero-volume regions, but for our algorithm

to properly construct an infeasibility proof, we require Cobs
to always have a non-zero volume. We claim that this is a

reasonable requirement on Cobs since robot manipulators and

real-world obstacles have non-zero volume.

Our approach treats configurations as real-valued vectors

for the purpose of learning the manifold. Generally, many

motion planning algorithms require only that the configuration

space be a metric space, for example SE(3). Instead, we

effectively require a Euclidean configuration space, e.g.,

a vector in R
n of a manipulator’s n joint angles. We

claim this Euclidean space requirement is reasonable for

physical manipulators, since when considering inner hardware

arrangements and outside physical environment, joint angles

θ and θ + 2kπ are rarely the same.

We assume for this work, kinematic motion planing in

which infeasibility is caused only by the obstacle region,

and we do not consider differential constraints. That is,

we do not consider steering functions (Lafferriere and

Sussmann 1991), dynamics (Donald et al. 1993), or implicit

constraints (Berenson et al. 2009; Kingston et al. 2019).

Though this assumption is valid for many manipulation

scenarios, future work is needed to address more general

cases.

Another important assumption of our algorithm is the

ability to sample points on the manifold and the ability to

obtain configuration space penetration depth. We provide

in subsection 4.2 and subsection 4.4 empirically robust,

optimization-based approaches to sample the manifold and

calculate configuration space penetration depth for Cartesian

obstacles, which is a typical case for robot manipulators.

However, these results are not theoretical proofs that points on

the manifold and the penetration depth are always available.

Under the assumption that we can sample on the manifold and

compute configuration space penetration depth, our algorithm

will terminate. We demonstrate robust ability to find plans or

infeasibility proofs for robot manipulators in the experiments

(see section 5).

Li and Dantam
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Figure 6. An algorithm overview. The part in the red block is

showing the infeasibility proof construction steps.

4 Framework and Implementation

Our overall framework has three major components (see

Figure 2). At the top level, a sampling-based motion planner

and the infeasibility proof construction algorithm run in

parallel, terminating with either a plan or an infeasibility

proof. On the sampling-based motion planner side, we

save all sampled configurations in Cfree and Cobs. On the

infeasibility proof side, there are two major steps. First, we

use configurations sampled in Cfree to learn the manifold.

Second, we check if the manifold is contained entirely in

Cobs. If we successfully check that the manifold is in Cobs,
then we have proven plan infeasibility. If this check fails, then

we go back to re-learn the manifold. This overall framework

can work with different approaches for sampling, learning

the manifold, and checking the manifold. In the rest of this

section, we describe our current implementation.

Our implementation of infeasibility proof construction

has four important steps, indicated in Figure 6 with orange

blocks. If all four steps complete successfully, then we have

an infeasibility proof. Otherwise, the algorithm loops back

to previous steps based on where the failure happens. Given

qstart, qgoal, and saved Cfree points, the first step is to learn

a manifold (see subsection 4.1). Next, we sample points on

the manifold by projecting the obstacle region points onto

the manifold (see subsection 4.2). Then, we triangulate the

manifold using the sampled manifold points with tangential

Delaunay complex (see subsection 4.3). At last, we check

that the polytope is entirely in Cobs by testing each facet (see

subsection 4.4). Corresponding to the framework in Figure 2,

the first step learns the manifold, and the remaining three

steps check the manifold. In the following subsections, we

discuss each of these four steps in detail.

4.1 Learning the manifold

In this step, we learn the manifold using sampled free space

points. A successful learning result is the foundation of all

following steps, since the rest of the three steps all depends

closely on the learned manifold.

First, we specify our input training data. The PRM planner

grows a planning graph and tries to connect sampled points in

Cfree to existing graph components. Disconnected regions in

Cfree result in disconnected components of the planing graph.

We gather the Cfree points from the PRM planner’s graph.

We take the graph component that contains the goal point as

one of its vertices and mark all vertices (points) in this graph

component as one class. This goal component is similar to

marking the goal tree in RRT-connect. Lastly, we mark all

vertices in other graph components not containing the goal

as the other class. At this point, we have marked all the input

data for training. We emphasize that the training input data

consists of the two classes of Cfree points, not Cfree and Cobs
points. The goal of the learning step is to construct a manifold

that exists in Cobs, not a manifold that separates Cfree and

Cobs. This is different from the biased sampling algorithm

proposed by Bialkowski et al. (2013) that iteratively refines

obstacle representations.

Next, we train a classifier with the input data. Finding

the right training method is important. There are several

requirements for the training method. First, the training

classifier should have enough flexibility to fit any boundary.

We need to learn a classifier that completely separates the two

classes we defined so that the classifier’s decision boundary

can fit into the obstacle region entirely. The obstacle region

of the configuration space may have any curvature, and the

classifier’s decision boundary must fit into that curvature.

Secondly, it is more convenient for the following steps if

the classier directly provides a closed-form, differentiable

function. This closed-from function is useful to sample points

on the manifold (in subsection 4.2). Thirdly, the training

method ideally has few hyper-parameters to tune, since

we want the algorithm to be easily applicable to general

configuration spaces.

The particular classifier we use is a support vector machine

(SVM) with Radial Basis Function (RBF) kernel, which

offers certain advantages in this application. RBF kernel SVM

directly trains a classification function, in the following from,
∑

aiK(xi,x) + b = 0,K(xi,xj) = e−γ(xi−xj)
2

, (1)

where each xi is a support vectors, b is a known number,

each ai is a known coefficients, and K is the RBF kernel

function. This function is differentiable. There is one hyper-

parameter in the function to tune—the over-fitting parameter

γ. By adjusting γ, the classifier may fit any curve. This γ is

also one of the hyper-parameters in our algorithm, and we

further discuss this hyper-parameter in the next paragraph.

Compared to learning methods that may require substantial

tuning, such as neutral networks, having only one hyper-

parameter is helpful in this sub-step. Additionally, another

advantage of the SVM is that it creates a margin to maximize

separation between classes. This maximum margin increases

penetration depth of the manifold points in the obstacle region,

which helps with checking facets in subsection 4.4. While the

RBF SVM meets our needs to learn a separating manifold,

other classifiers that satisfy the above requirements may also

fit within this overall framework.

While typical machine learning applications attempt to

avoid over-fitting that fully separates the training data, our

application actually requires such an over-fit manifold that

separates the two classes without exception. When training

the manifold, we increase the over-fitting parameter γ in the

RBF kernel by a small amount ∆γ each time until the training

data’s accuracy is 1, that is, the manifold completely separates
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Algorithm 1: Train-Manifold

Input: Pgoal // Goal component vertices

Input: Prest // Non-goal component

Output: f // Learned manifold

1 accuracy← 0;

2 γ ← 1;

3 repeat // Ensure complete separation

4 f ← train-SVM(Prest, Pgoal, γ);
5 accuracy← test-SVM(f, Prest, Pgoal);
6 γ ← γ +∆γ ; // increases separation

7 until accuracy = 1;

γ = 2 γ = 10.0

γ = 20.0 γ = 40.0

Figure 7. Effect of over-fitting parameter γ on RBF-kernel SVM

training. Too large γ may produce discontinuous manifolds.

the two classes. This process is described in Algorithm 1.

Pgoal has all the points in the planning graph component

containing qgoal, and Prest has the rest of the points in

the planning graph. This step ensures that the manifold

has enough over-fitting to separate the two classes and that

it does not over-fit so much that the one class’s region

become discontinuous (see Figure 7). The γ parameter and

the increment ∆γ are hyper-parameters of the algorithm. We

use 1.0 and 0.1 in the experiments, which are robust across

the tested robot scenes.

According to Definition 1, an infeasibility proof manifold

must be closed, continuous, and entirely in Cobs. In the

following two paragraphs, We explain how learning the

manifold from progressively larger trees results in such a

manifold when there is no feasible plan.

First, if no plan exists, we eventually learn a manifold

contained in Cobs given enough training points. If no plan

exists, then there must be a closed obstacle region that

separates the Cfree region containing the goal point and the

rest of Cfree. Since the obstacle region is closed, it has an outer

boundary and an inner boundary. If we have enough points

sampled close to both boundaries, these points as support

vectors will force the manifold into the obstacle region. In

Figure 8, as the number of points in the start and goal trees

increases, the learned manifold fits more fully into Cobs.
Second, using the training process that incrementally

over-fits with a small enough over-fitting incremental value

∆γ, the resulting manifold will eventually be closed and

continuous. The manifold function from RBF-kernel SVM is

a combination of Gaussian functions centered at the support

vectors. The over-fitting parameter γ essentially influences

the effecting range of the Gaussian functions. If the effecting

range is too large, then there will be misclassifications. If

the effecting range is too small, then the Gaussian functions

will form separate regions at the support vectors (Figure 7).

With the right effecting range or over-fitting parameter,

the combination of Gaussian functions will be closed and

continuous when the support vectors are sampled densely

enough since the target obstacle region is closed. The training

process that incrementally over-fits (Algorithm 1) will choose

the largest effecting range (with the fixed increment ∆γ as

changing steps) that is small enough to fit all the training data,

so that the combination of Gaussian functions will not form

separate regions, meaning the manifold is continuous.

To summarize, if no plan exist, given enough training

points, Algorithm 1 eventually produces a manifold that is

closed, continuous, and contained in Cobs. At this point,

we have learned a manifold that may be an infeasibility

proof according to Definition 1. In the following steps, we

triangulate the manifold to verify that it satisfies the three

requirements of an infeasibility proof.

4.2 Sample the manifold

After learning the manifold, we must verify that it is

entirely contained in the obstacle region Cobs. However,

directly proving that a high dimensional manifold is inside

an implicitly defined space (Cobs) is difficult. Instead, we

triangulate the manifold into smaller pieces and then prove

all the pieces are in Cobs. The first step of triangulation is

sampling points on the manifold.

We use the obstacle region points Pobs to sample points

on the manifold. Typical sampling-based planners discard the

Pobs points. In our algorithm, we save all the points sampled

in obstacle region while constructing the PRM.

For each point in Pobs, we find the closest point on

the manifold (line 5) by solving the following nonlinear

constrained optimization problem,

min
qm

dist(qobs,qm)

s.t. f(qm) = 0 ,
(2)

where the qobs is the given point in Cobs, qm is the manifold

point we want to find, and f is the manifold’s function learned

in Algorithm 1. Solving this optimization problem for every

point in Pobs produces a set of points on the manifold. Using

Pobs as a seed to solve (2) offers an effective heuristic because

these obstacle region points are likely to exist closer to the

manifold in Cobs. If solving this optimization problem fails

for a point, we discard that point. Though (2) may not be

robustly solvable for all possible configuration spaces, we

are able to robustly solve this optimization problem for a
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Figure 8. We treat the points connectable to the goal point as one class and all other points as the other class, and learn a classifier

(the separating manifold). (a)–(d) Learned manifold fits into the obstacle region as more points are sampled (100, 500, 2000, 6000

from left to right), the blue circles are showing parts of the manifold outside of the obstacle region. The same applied to 4-DOF robot

arms in section 5.

reasonable amount of manifold points in the experimental

scenarios involving robot manipulators in section 5.

Algorithm 2: Sample-Manifold

Input: f // Manifold

Input: Pgoal // Goal component vertices

Input: Prest // Non-goal component

Input: Pobs // Obstacle region points

Output: Pm // Sampled manifold points

1 repeat

2 Pm ← ∅;
3 free-point← false;

#pragma parallel for

4 foreach qobs ∈ Pobs do

5 qm ← find-closest-point(qobs, f);
6 if qm 6= NAN then // opt succeed

7 if qm ∈ Cfree then

8 add-point(Prest, Pgoal,qm);
9 free-point← true;

10 else Pm ← Pm ∪ {qm};

11 if free-point then // Retrain

12 f ← Train-Manifold(Prest, Pgoal);

13 until ¬free-point; // all samples in Cobs

Algorithm 2 describes the process to sample the manifold.

Pobs are the points sampled in Cobs, Pm is the set of manifold

points. We solve (2) in parallel for each point in Pobs using a

thread pool. In line 5, we find the closest point on the manifold

to the current point in Cobs. If this optimization problem solves

successfully, then we check if the manifold point is in Cfree.

If the manifold point is in Cfree, then we add this point to

either Prest or Pgoal with the add-point function (line 8).

If any such sampled manifold point in Cfree, then the manifold

cannot be fully in Cobs, and we need to retrain the manifold

(line 12). Before retraining, adding the violating points to the

training data set can help the manifold converge into Cobs
faster. After retraining, the function repeats to re-sample the

points on the updated manifold. This process continues until

all sampled manifold points are in Cobs. We save all sampled

manifold points in Cobs to Pm.

In the add-point function, we try to add the point in

Cfree to either Prest or Pgoal by interpolating a straight line

between the point and the closest vertex on either Prest or

Pgoal (line 8). Note that our implementation adds the point to

a copy of the graph components for the infeasibility proof but

not the graph used by the PRM planner to avoid modifying

the underlying planner. Now that we have a set of points

on the manifold, the next step uses these points to create a

triangulation of the manifold.

4.3 Triangulation

In this step, we triangulate the manifold using the

sampled manifold points from the previous step. The

result is a polytope approximating the learned manifold.

Proving a manifold is in Cobs directly is difficult. Instead,

we construct the polytope using tangential Delaunay

complexes (Boissonnat and Ghosh 2014; Boissonnat et al.

2018) to reconstruct a triangulation of a manifold from the

set of sampled points on the manifold. Boissonnat and Ghosh

(2014); Boissonnat et al. (2018) provide an algorithm to

construct the tangential Delaunay complexes for triangulation

of manifolds, which is implemented in Jamin (2020). We

apply this algorithm to the sampled manifold points from

subsection 4.2 to triangulate the learned SVM manifold from

subsection 4.1. The triangulation of the manifold forms a

polytope, which we use in later steps.

Here, we focus on the key requirements and results of

the triangulation algorithm; please see (Boissonnat et al.

2018, Ch 7 and 8) for more details. Manifold triangulation

using tangential Delaunay complexes (subsection 4.3)

requires underlying the manifold to be a closed and

differentiable submanifold of an n-dimensional Euclidean

space (Boissonnat et al. 2018, Ch 8). In our case, the learned

manifold from RBF kernel-SVM is differentiable since the

resulting manifold function is a combination of Gaussian

functions. At this point, even though we know the learned

manifold eventually converges to be closed, we must still

verify this. If the manifold is not closed, then the tangential

Delaunay complexes triangulation will fail. In this sense, the

triangulation step also validates that the manifold is closed. If

triangulation is successful, then the manifold must be closed.

If the triangulation step is not successful, we must retrain the

Li and Dantam



4 FRAMEWORK AND IMPLEMENTATION 9

manifold with more sampled points in Cfree. A non-closed

manifold is not the only reason that triangulation may fail;

the second reason—which we observed more frequently—

depends on the sampled points on the manifold.

The second requirement for the tangential Delaunay

complex triangulation is that the sampling points must be

distributed densely and evenly on the manifold. Boissonnat

et al. (2018) define densely and evenly as follows.

Definition 2. A finite point set P is an (ǫ, η)-net ofM, if

and only if it is:

• (ǫ-dense) for any point x ∈M, let p be the closest

point to x in P , ‖p− x‖ < ǫ;

• (η-separated) for any two points p, q ∈ P , ‖p− q‖ >
ǫη.

Definition 2 provides the second requirement on the set

manifold points: they must be an (ǫ, η)-net of the manifold

for a small enough ǫ.
We ensure the (ǫ, η)-net requirement using a subsampling

process. This subsampling process has two parts. First, we

subsample a fixed subset of the manifold points (half of all

the manifold points) that are as far away from each other as

possible. Next, we subsample again from the result of the first

subsampling by ensuring a minimum distance dmin between

two points. Together, these two subsampling steps ensure the

resulting points set is an (ǫ, η)-net of the learned manifold for

some ǫ and η. With a fixed dmin, if we have more manifold

points, ǫ would be smaller. We do not need to calculate ǫ
and η exactly. If the triangulation step fails because of the

(ǫ, η)-net requirement, it means we need a smaller ǫ, so we

need to sample more points on the manifold.

The minimum distance dmin in the subsampling process

is a hyper-parameter in our algorithm. We choose the dmin

according to the obstacle region Cobs of the configuration

space, with larger dmin if Cobs separating the goal or start is

thick and smaller dmin if Cobs separating the goal or start

is thin. In general, this value should be small enough to

approximate any curves on the manifold. This parameter is

empirical (see section 5 for the specific values for each robot

scenes). Generally, one may choose a small value for dmin to

support greater obstacle region curvature.

Boissonnat et al. (2018) prove that if the above

requirements are satisfied and ǫ is small enough, the resulting

triangulation from the algorithm approximates the manifold

with bounded error. The algorithm is linear in the dimension

of the Euclidean space (n), exponential in the dimension of

the manifold (n− 1 in our case, where n is the dimension of

C), and quadratic in the number of sampled points (Boissonnat

and Ghosh 2014).

If applying the algorithm on the subsampled points returns

a triangulation of the manifold successfully, then we have

constructed a closed polytope for the next step. Figure 3 shows

a 2D polytope, and Figure 9 shows polytopes for a predefined

3D configuration space and the configuration space of a 3-

DOF Jaco arm. If the triangulation is not successful, we go

back to obtain more manifold points for a small ǫ.
The polytope constructed is an approximation of the

learned manifold. Proving that the polytope is entirely in Cobs
does not prove that the learned manifold is entirely in Cobs.

Figure 9. Example 3D polytopes constructed using tangential

Delaunay complexes. (Left) The obstacle region is between two

balls of radius 2.0 and 0.5. (Right) The polytope constructed in

the 3 DOF Jaco arm experiment (no obstacle region shown).

Instead, the polytope is the infeasibility proof we have verified

to satisfy all requirements in Definition 1, not the learned

manifold itself. The learned manifold is a strong heuristic for

constructing this polytope.

4.4 Checking the polytope

After constructing the polytope in the previous step, we check

that the polytope is entirely in Cobs by checking each facet

of the polytope. If all facets of the polytope are in Cobs, the

polytope is entirely in Cobs and satisfies the requirements of

Definition 1—i.e., the polytope is an infeasibility proof.

Algorithm 3: Check-Polytope

Input: F // Facets

Output: ok // All facets in Cobs
1 function check-facet(ft) is

2 r, c← Mini-Ball(ft);
3 if c /∈ Cobs then return false;

4 pd← cal-Pene-Dist(c);
5 if pd = NAN then // PD not found

6 return false

7 else if r ≤ pd then// ball inside Cobs
8 return true

9 else // ball outside Cobs
10 res← true;

11 ftd ← decompose(ft);
12 foreach f ′t ∈ ftd do

13 if ¬check-facet(f ′t) then

14 res← false;

15 return res;

16 ok← true;

#pragma parallel for

17 foreach ft ∈ F do

18 if ¬check-facet(ft) then

19 ok← false;

Algorithm 3 shows the procedure to check the facets.

We check each facet in the polytope iteratively, in parallel

(line 17), while the check of each facet runs recursively

(check-facet). In the check-facet function, ft is the

input facet to check, and pd stands for penetration depth.

First, we calculate the minimum enclosing ball of the given
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facet (line 2). The minimum enclosing ball algorithm (Fischer

et al. 2003) calculates the radius and center of the minimum

enclosing ball in high dimension given a set of points. In our

case, the set of points are the vertices of the facet ft. Note

here the facets’ vertices are n-dimensional, where n is the

dimension of the configuration space. We want to find the

minimum enclosing ball on the facet’s hyper-plane to check

the facet’s existence in Cobs. Because of this, we first project

a facet’s vertices to n− 1 dimension with the Gram–Schmidt

process, calculate the minimum enclosing ball, then project

the minimum enclosing ball’s center back to n dimension to

calculate its penetration depth. If the center of the minimum

enclosing ball is not in Cobs, it means most likely the facet is

not in Cobs, and we need to make a finer triangulation.

If the center of the minimum enclosing ball is in Cobs,
then we calculate the center’s configuration space penetration

depth (line 4). Finding the configuration space penetration

depth (CPD) is a key sub-routine. Existing libraries (Pan et al.

(2012)) compute Cartesian space penetration depth. We find

the configuration space penetration depth of a point in Cobs
by solving the following nonlinear optimization problem,

min
q

dist(qo, q)

s.t. Penetration-Depth(xl(q), xo) ≤ 0

l ∈ {1, . . . , nlink}, o ∈ {1, . . . , nobs} ,

(3)

where qo is the configuration in Cobs, q is the point we want

to find in Cfree, nlink is the number of manipulator links,

nobs is the number of obstacles, xl is Cartesian point of

maximum penetration on link l, xo is the Cartesian point

of maximum penetration on obstacle o. If link l and obstacle

o are in collision, CPD between these two frames is positive;

otherwise, CPD is negative. The optimization objective is to

minimize configuration space distance, subject to q being a

point in Cfree (see Figure 10). In the constraints, we ensure q

is in Cfree by checking every robot link against every object. A

point outside of C boundaries (joint limits) is also considered

to be in Cobs, and its CPD is the distance to its closest Cfree
point in the joint limits.

Whether we can solve this optimization problem

successfully depends on a good initial value of q. In our

implementation, we find the closest point to qo in the planning

graph and use this point as the initial value of q. If solving (3)

fails with this initial value, then it means we need a initial

value closer to qo. To get a better initial value, we sampled

randomly around a neighborhood of qo for a q in Cfree that

is closer to qo than the first initial value from the planning

graph and re-calculate its penetration depth for a fixed number

of attempts. This is an empirically robust way to compute

penetration depth. If the optimization problem is not solved

for a point in Cobs, then it means we need a denser sampling

in Cfree, so we loop back to get more Cfree configurations from

the buffer.

If the penetration depth of the center of the minimum

enclosing ball is larger than its radius, then the facet is

entirely in Cobs and passes the check since the facet is

enclosed inside the ball (line 7). If not, then we decompose

the facet into smaller facets and recursively check each of its

decompositions (line 12). We keep recursing on smaller pieces

until we have checked the entire facet or we have found a

Figure 10. Configuration space penetration depth of two points

POA and POB in Cobs. PA and PB are their corresponding

closest points that satisfy the constraints.

Figure 11. Decomposition of a 2D facet (top) and a 3D facet

(bottom).

failing piece of facet with its minimum enclosing ball’s center

in Cfree.

The decompose function (line 11) takes a facet and

returns a set of smaller pieces of the facet whose union is the

original facet. The decomposition depends on the dimension

of facets. For example, in a 3-DOF configuration space, the

facets are 2D triangles. Using the triangle edges’ middle

point, we can decompose a triangle into 4 pieces. In a 4-DoF

configuration space, the facets are 3D, and the decomposition

has 8 smaller pieces. Figure 11 shows this decomposition for

a 2D facet and a 3D facet.

This facet checking process may fail for two reason. If the

checking fail because one or more points penetration depth is

not solved (line 5), then we need more sampled points in Cfree
to serve as initial value for the optimization problem (3). If the

checking process fails because points on the facet may be in

Cfree (line 9), then either we need to retrain the manifold (the

manifold is not entirely in Cobs, so the facets are not entirely

in Cobs) or we need a denser sampling on the manifold (the

manifold is entirely in Cobs, but the facets are not entirely in

Cobs). In this case, we go back to retrain and sample more

points on the manifold.

If all facets pass the check, it means the polytope is entirely

in Cobs and we have found an infeasibility proof. As stated

before, the final infeasibility proof is actually the polytope,

not the manifold itself.
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4.5 Algorithm Summary

In this section, we summarize how the infeasibility proof

construction works as a whole. In previous sections, we

described the four important steps: (1) learning a manifold,

(2) sampling points on the manifold, (3) triangulation of

the manifold, and (4) checking the polytope. The four steps

run sequentially, and each step depends on the result of the

previous step. If all steps are successful, the result is proven

infeasibility. Although we know the algorithm would return

in the limit, we may need to obtain additional samples and

re-run the steps. Algorithm 4 describes the flow between the

steps when constructing the infeasibility proof.

Algorithm 4: Find-InfProof (Prest, Pgoal, Pobs)

1 TC-res← false;

2 facets-res← false;

3 f ← Train-Manifold(Prest, Pgoal);

4 repeat

5 Sample-Manifold(f , Pobs, Prest, Pgoal);

6 if ¬TC-res then

7 TC-res← generate-TC(Pm);

8 if ¬TC-res then

9 generate-mpoints();

10 continue;

11 facets-res← check-polytope(F);

12 if ¬facets-res then

13 if PD fail then

14 get-free-point();

15 else

16 generate-mpoints();

17 TC-res← false;

18 continue;

19 until TC-res ∧ facets-res;

After we train the manifold (line 3), we perform an

initial check to make sure the manifold is largely converged

into Cobs by verifying that all manifold points are in Cobs
(in Sample-Manifold). Then we try to triangulate the

manifold. If the triangulation fails, we need a denser sampling.

The function generate-mpoint helps generating more

points on the manifold. In this function, we take two randomly

picked manifold points and interpolate their middle point.

Then we apply the middle point to (2) to calculate a new

manifold points. We continue generating more manifold

points until the triangulation is successful.

After we have a successful triangulation of the manifold,

the last step is to check each facet in the triangulation. This

step can fail for two reasons as stated in subsection 4.4.

If calculating penetration depth fails, we need to get more

Cfree points (line 14) from the planning graph. Otherwise,

we make a finer triangulation using generate-mpoint. If

all steps run successfully, this algorithm terminates with an

infeasibility proof of the given configuration space.

5 Experiments

We run experiments on manipulator motion planning

problems to show how the algorithm works in different

dimensions and how it behaves with and without a feasible

Start

Goal

Start
Goal

Figure 12. Experiment scenes. Top-left: Jaco arm trying to

reach inside a shelf. Top-right: 4-DOF shoulder-elbow robot

trying to reach inside a box. Bottom: ZYYY arm trying to reach

inside the frame.

plan. In scenarios with no feasible plan, we show distributions

of running time over many trials and profile to find

computational bottlenecks. These experiments indicate that

triangulating the manifold is the current bottleneck limiting

scaling to higher DOF. In scenarios with feasible plans, we

compare running times with and without the infeasibility

proof construction to show the overhead.

The algorithm terminated in every experimental trial,

returning either an infeasibility proof when the motion

planning problem was infeasible or a motion plan when the

problem was feasible. We run experiments on one 3-DOF

manipulator scene and three 4-DOF manipulator scenes. The

following subsections describe the experiments in more detail.

To use the inherent parallelism in several parts of

infeasibility proof construction, we run our experiments

on a multi-core system, a dual CPU AMD EPYC 7402

with 24 cores per CPU. We adapt PRM (Kavraki et al.

1996) in OMPL (Şucan et al. 2012) to run in parallel

with our infeasibility proof construction. We solve the

nonlinear optimization problems using sequential least-

squares quadratic programming (SLSQP) (Kraft 1988).

We construct the polytope using the tangential complex

module in GUDHI package (Jamin 2020). We train the

manifold using LIBSVM (Chang and Lin 2011). We check

collisions and penetration depth using the Flexible Collision

Library (Pan et al. 2012), and we model robot kinematics

using Amino (Dantam 2020a). We determine ground truth for

plan non-existence to high-confidence for a scene by running

RRT-connect continuously for greater than 20 minutes.

5.1 3-DOF Infeasible Experiments

The first experiment uses the same Jaco arm scenario as Li

and Dantam (2020). The goal in this scene is to reach the blue

block at the back of the shelf from a position outside of the

shelf (see Figure 12, top-left). We run the experiments for

50 trials and calculate the mean running time and standard
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deviation. Table 1 shows the mean running time of the

entire infeasibility proof construction, the time taken by the

triangulation step, time taken by the sampling manifold points

step and the time taken by the checking facets step. The table

also shows the number of manifold points sampled and the

number of facets in the triangulation polytope. The running

time distribution among the 50 trials is shown in Figure 13,

on the top-left.

In this experiment, we use a primitive shape collision

geometry model of the Jaco arm for computing configuration

space penetration depth. This is why the experiment takes

significantly less time than in Li and Dantam (2020) and Li

and Dantam (2021) (with average running time of 457.5s

and 177.36s respectively). The use of parallel computing also

greatly benefits running time. In this implementation, with an

average running time of 8.00 seconds among 50 trials, and a

running time distribution that is mostly under 20 seconds, we

can say that the algorithm is practically applicable to 3-DOF

manipulators.

5.2 4-DOF Infeasible Experiments

We also run experiments on three 4-DOF scenes to

demonstrate the improved scalability and analyze running

time distributions. The first scene uses a 4-DOF shoulder-

elbow robot (a three DOF spherical joint and a one DOF

revolute joint, see Figure 12 top-right). The goal in this scene

is to reach inside the red box. The second scene uses the

4-DOF SCARA arm, and the scene is shown in Figure 1.

The SCARA arm has three co-planar revolute joints and

one prismatic joint (Makino 1982). The goal in this scene

is to reach inside the purple box with the red block attached

at the end-effector. The third scene use a ZYYY robot (see

Figure 12, bottom). The goal in this scene is to reach the inside

of the frame from a position outside of the frame. Table 1 lists

running times, and Figure 13 shows the distributions.

In the 4-DOF shoulder-elbow robot scene, we use a

subsampling minimum distance of 0.002, in the SCARA arm

scene, we use a subsampling mininum distance of 0.006, and

in the ZYYY arm scene, we use a subsampling minimum

distance of 0.007. Intuitively, these minimum distance

values comes from the smallest “curve” on the learned

manifold. This minimum distance should be small enough

to form triangulation at smallest curves on the manifold. In

experiments, we determine these numbers empirically. We

start with a larger value and the if triangulation with tangential

complex does not work, then decrease the value gradually.

A small value would always work but needs more manifold

points and creates more facets, increasing running time.

Infeasibility proof construction for the 4-DOF shoulder-

elbow robot and the ZYYY arm takes around two minutes

on average, which is about half of the average running time

in Li and Dantam (2021) for the shoulder-elbow robot. For the

SCARA robot scene, the average running time is around four

minutes, which is also about half of the average running time

in Li and Dantam (2021). The running time improvements

come primarily from parallelization. Table 1 shows that the

parallel parts of the algorithm—sampling manifold points

and checking facets—now consume a minor amount of the

total running time. Triangulation, which remains serial in

the current implementation, takes the significant majority

(> 90%) of the time.

We also see from Table 1 that all the rest of algorithm,

including learning, takes a small portion of running time.

Notably, learning the manifold is fast. Finding this manifold

is the first and most important step in the infeasibility proof

construction, since the rest of the algorithm is only to check

the manifold’s containment in Cobs. Improvements to this

check could greatly reduce overall running time.

Figure 13 shows distributions of running times for the four

scenes’ infeasibility proof construction. The majority of trials

are faster than the average, with a few slow outliers. We also

see that the distributions depend on the complexity of scenes.

For the simpler scenes, the distributions are more concentrated

(the 3-DOF jaco arm scene, the 4-DOF shoulder-elbow robot

scene and the ZYYY arm scene). The SCARA arm scene has

a more scattered distribution since it is more complicated.

5.3 Experiments with Feasible Plans

For the above four scenes, we modify the scenes to make

plans feasible but still difficult to find. For the Jaco arm, we

move the shelf further away from the robot base to make the

blue box’s position reachable. For the 4-DOF shoulder-elbow

robot, we move the red box away from the robot base to make

the inside reachable. For the SCARA arm, we move the ball

away from the box to make room for the red block attached

at the end-effector to pass. For the ZYYY arm, we move the

frame further away from the robot’s base to create room for

the arm to get inside. We test these scenes building a PRM

with and without the infeasibility proof construction for 50

trials each. Table 2 shows the results.

When there is a feasible plan, building a PRM with

infeasibility proof construction introduces minor absolute

overhead if the plan can be found in a relatively short time. If

the scene is more complicated, infeasibility proof construction

introduces more overhead. The overhead is mainly due to

saving all the sampling configurations, since infeasibility

proof and PRM construction run in parallel.

Another purpose of these feasible plan experiments is to

show that the algorithm correctly terminates. With the 200

trials of feasible plan experiments we run, the algorithm

always terminates with a plan.

6 Discussion and Future Work

Our algorithm has two hyper-parameters, and termination

depends on appropriate selection of these hyper-parameters.

The training over-fitting parameter γ effects learning the

manifold. In the experiments, we use γ = 1.0 and ∆γ = 0.1
for all the scenes. Qualitatively, these hyper-parameters were

not sensitive to the tested scenes, and these given values

worked across many scenes. Another hyper-parameter dmin

does depend on the scene, since it must be small enough

to capture any sharp curves on the learned manifold, which

depends on curvature of the obstacle region. We acknowledge

the algorithm’s reliance on these hyper-parameters. However,

we note that such dependence upon hyper-parameters exists

in many algorithms. For example, selecting an RRT step size

that is too large may cause failure (Wang and Meng 2016).

Our current algorithm applies to kinematic motion planning

without differential constraints. We learn the manifold and

check containment in Cobs based on geometries of the

configuration space and specifically assume a Euclidean
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Manipulator Experimental Results in Infeasible Scenes

Scenes Total (s) TC (s) samp-mf (s) checking (s) # of mpoins # of Facets

Jaco Arm
Mean 8.00 4.43 1.43 1.86 20910.86 547.96

STD 15.57 10.70 1.72 2.53 13236.44 536.45

Shoulder-Elbow
Mean 110.49 108.14 0.43 1.78 4432.52 12383.66

STD 113.23 111.23 0.42 3.61 5087.12 8528.07

SCARA arm
Mean 245.07 221.00 3.34 17.73 174711.12 15096.52

STD 168.34 159.62 1.85 14.50 45897.44 289.47

ZYYY arm
Mean 131.51 107.71 3.73 18.21 124019.48 96862.10

STD 125.47 98.07 2.14 32.97 36671.50 14263.18

Table 1. Running time profiling results of infeasibility proof construction in four scenes, averaged over 50 trials. The jaco arm scene is

3-DoF, the rests are 4-DoF. “TC” is for triangulation with tangential complex, “samp-mp” is for sampling of manifold points, “checking”

is for checking of facets.
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Figure 13. The running time distribution of 50 trials in the three scenes. Top-left: 3-DOF Jaco arm. Top-right: 4-DOF shoulder-elbow

robot. Bottom-left: SCARA arm. Bottom-right: ZYYY arm.

Feasible Plan Experiments mean/std (s)

Jaco Arm Shoulder-Elbow Arm SCARA Arm ZYYY Arm

PRM only 3.95 /5.73 0.70/0.45 15.01/12.87 1.21/1.02

PRM w/ IF 3.77/3.61 1.09/3.22 37.04/27.44 1.29/1.11

Table 2. Experimental results for plan feasible experiments, averaged over 50 trials, running PRM only vs. running PRM with

infeasibility proof.

configuration space. In contrast, differential constraints need

not follow such metrics of a space. Handling differential

constraints in motion planning infeasibility proofs remains a

potential direction for future work.

6.1 Scaling to higher dimensions

Our current algorithm works for up to 4-DOF configuration

spaces. Critically, learning the manifold consumes a

negligible part of running time. Rather, the bottleneck is

checking that manifold is in the obstacle region. Scaling
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to a higher dimension may employ a similar learning step

but requires greater efficiency in the checking step. Table 1

shows that the triangulation in the checking step takes a

large part of the total runtime in all the scenes. Roughly,

further optimization of other parts of the algorithm would

improve running times by at most 20%, while optimizing

the triangulation could yield 80% speedups (according to

Amdahl’s law). We propose two directions for future work

to scale to higher dimensions: to explore and apply other

triangulation methods and to further leverage parallelism.

For the first option, we anticipate that the runtime for

triangulation will significantly decrease for more advanced

triangulation methods. For example, Kachanovich (2019)

proposed the Coxeter triangulation algorithm that in some

cases is an order of magnitude faster than our current

triangulation method using tangential Delaunay complexes.

Our algorithm could be modified to incorporate this Coxeter

triangulation.

At the same time, we want to explore methods to

parallelize the triangulation step. Exploiting the parallelism

of modern CPUs and GPUs offers benefits for planning

problems (Pan and Manocha 2012; Chrétien et al. 2016).

In our current algorithm, the sampling manifold and checking

facets steps both apply to lists of independent elements,

which is embarrassingly parallel, i.e., little data is shared

between threads, enabling near linear speedup with number

of cores. This useful property comes from the structure of

our algorithm. In contrast, algorithms that must share more

data between threads can pose challenges for parallelization

and offer less potential speedup. In particular, the current

triangulation step is not easily parallelizable since each

element of the triangulation, i.e., the facets on a polytope, are

connected with one another in the final structure. To efficiently

parallelize the triangulation step, we propose to investigate

methods that grow facet on the manifold in parallel and fix

gaps between the facets in a later step (Akkouche and Galin

2001).

To summarize, exploring other triangulation methods

and/or adapting the triangulation to be parallelizable offer

potential directions for future work to scale this framework to

higher dimensions.

6.2 Completeness

Given a Euclidean configuration space with non-zero

volume obstacle regions and the ability to obtain manifold

points and configuration space penetration depth (assumptions

in section 3), the algorithm eventually terminates with either

an infeasibility proof or a plan. To find an infeasibility proof,

the learned manifold must exist entirely in Cobs, which occurs

as more Cfree points are sampled in the configuration space. If

there is a part of the manifold in Cfree, the checking steps

would generate Cfree manifold points on that part of the

manifold. These Cfree manifold points are added back to the

training data set to re-learn the manifold and “push” the Cfree
part of the manifold into Cobs. This iterative process causes the

learned manifold to eventually converge into Cobs. Then, the

following checking step can use this manifold to generate an

infeasibility proof, which is the triangulation of the manifold.

Concurrently, the PRM planner runs in another thread to find

a plan. The result of either an infeasibility proof or a plan

terminates the algorithm. However, the termination of the

algorithm depends on sampling in Cfree and sampling on the

manifold, which is not guaranteed in finite time. We say our

algorithm is complete in the limit (given long enough time),

which is stronger than probabilistic completeness with the

additional infeasibility proof and weaker than the definition

of completeness since the algorithm cannot guarantee return

in finite time.

7 Conclusion

In this paper, we introduce a framework and algorithm

to construct infeasibility proofs alongside sampling-based

motion planners by using sampled configurations as training

data for learning. This framework produces a plan or an

infeasibility proof. The infeasibility proof construction has

two major steps, learning a manifold and checking the

manifold’s containment in Cobs. Our implementation based

on this framework leverages parallel computing capabilities

to reduce overall running time. Many experimental trials

demonstrate improved performance over previous work.

Potential approaches to improve efficiency of checking the

manifold may offer a viable future route to apply this

technique to higher DOF problems, with applications to many

practical manipulators.
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Siméon T, Laumond JP and Nissoux C (2000) Visibility-based

probabilistic roadmaps for motion planning. Advanced Robotics

14(6): 477–493.

Srivastava S, Fang E, Riano L, Chitnis R, Russell S and Abbeel

P (2014) Combined task and motion planning through an

extensible planner-independent interface layer. In: 2014 IEEE

International Conference on Robotics and Automation (ICRA).

pp. 639–646.

Stilman M and Kuffner JJ (2005) Navigation among movable

obstacles: Real-time reasoning in complex environments.

Li and Dantam



7 CONCLUSION 17

International Journal of Humanoid Robotics 2(04): 479–503.

Stilman M and Kuffner JJ (2008) Planning among movable obstacles

with artificial constraints. The International Journal of Robotics

Research 27(11-12): 1295–1307.

Thomason W and Knepper RA (2019) A unified sampling-

based approach to integrated task and motion planning. In:

International Symposium on Robotics Research.

Toussaint M (2015) Logic-geometric programming: An

optimization-based approach to combined task and motion

planning. In: Twenty-Fourth International Joint Conference on

Artificial Intelligence.

Varava A, Carvalho JF, Pokorny FT and Kragic D (2020) Caging and

path non-existence: a deterministic sampling-based verification

algorithm. In: Robotics Research. Springer, pp. 589–604.

Vega-Brown W and Roy N (2020) Asymptotically optimal

planning under piecewise-analytic constraints. In: Algorithmic

Foundations of Robotics XII. Springer, pp. 528–543.

Wang C and Meng MQH (2016) Variant step size rrt: An

efficient path planner for uav in complex environments. In:

IEEE International Conference on Real-time Computing and

Robotics. pp. 555–560.

Wells A, Dantam NT, Shrivastava A and Kavraki LE (2019)

Learning feasibility for task and motion planning in tabletop

environments. IEEE Robotics & Automation Magazine 4(2):

1255–1262.

Wilfong G (1991) Motion planning in the presence of movable

obstacles. Annals of Mathematics and Artificial Intelligence

3(1): 131–150.

Yalciner IF, Nouman A, Patoglu V and Erdem E (2017) Hybrid

conditional planning using answer set programming. Theory

and Practice of Logic Programming 17(5-6): 1027–1047. DOI:

10.1017/S1471068417000321.

Zhang L, Kim YJ and Manocha D (2007) A hybrid approach for

complete motion planning. In: 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). pp. 7–14.

Zhang L, Kim YJ and Manocha D (2008) A simple path non-

existence algorithm using c-obstacle query. In: Algorithmic

Foundation of Robotics VII. Springer, pp. 269–284.

Li and Dantam


	1 Introduction
	2 Related work
	2.1 Completeness
	2.2 Sampling-based planning
	2.3 Surface Triangulation
	2.4 Plan Infeasibility
	2.5 Robot Planning and Motion Infeasibility
	2.6 Feasibility Checking for Dynamic Systems

	3 Problem Definition
	4 Framework and Implementation
	4.1 Learning the manifold
	4.2 Sample the manifold
	4.3 Triangulation
	4.4 Checking the polytope
	4.5 Algorithm Summary

	5 Experiments
	5.1 3-DOF Infeasible Experiments
	5.2 4-DOF Infeasible Experiments
	5.3 Experiments with Feasible Plans

	6 Discussion and Future Work
	6.1 Scaling to higher dimensions
	6.2 Completeness

	7 Conclusion

