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Sample-Driven Connectivity Learning for Motion Planning

in Narrow Passages

Sihui Li Neil T. Dantam

Abstract— Sampling-based motion planning works well in
many cases but is less effective if the configuration space has
narrow passages. In this paper, we propose a learning-based
strategy to sample in these narrow passages, which improves
overall planning time. Our algorithm first learns from the
configuration space planning graphs and then uses the learned
information to effectively generate narrow passage samples.
We perform experiments in various 6D and 7D scenes. The
algorithm offers one order of magnitude speed-up compared to
baseline planners in some of these scenes.

I. INTRODUCTION

Sampling-based motion planners are effective and widely-

used tools for high-dimensional motion planning. Their key

advantages are guarantees on convergence [1], [2] and a

convenient problem formulation—essentially, requiring only

a configuration space validity checker to apply to new

scenarios. Typically using random sampling, these planners

efficiently expand the search to cover the configuration

space [3], [4], [5], [6], [7]. However, narrow passages along

feasible paths increase planning difficulty and time. With

uniform random sampling, the probability of sampling part

of the free space is proportional to its volume. Although

random sampling is generally effective, sampling in narrow

passages— particularly in high-dimensional environments—

presents challenges due to the small volume of narrow

passages compared to the entire configuration space. The

key to addressing this challenge is to infer locations of

narrow passages from previous samples or local geometric

information and then guide sampling towards those regions,

as applied in previous works [8], [9], [10].

Machine learning offers the potential to gather information

from previous samples, due to the generality of learning

techniques and their effective use of modern GPU computing.

Learning has been previously applied to improve planning

performance [11], [12], [13], [14]. Most such prior approaches

learn from workspace information, e.g., trajectories or visual

data. In contrast, this paper explores configuration space

learning. In previous work [15], we introduced a configuration

space learning approach to prove motion planning infeasibil-

ity. Now, we show that the same learned structures used to

construct infeasibility proofs also offer key information about

configuration space connectivity and provide an effective

heuristic to guide sampling in difficult motion planning

problems containing narrow passages.
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Fig. 1: As the number of training nodes grows, the learned

manifold is gradually “pushed” onto the narrow passage

regions. As a result, samples on the manifold in Cfree
(identified by yellow triangles) reveal the narrow passage.

New samples on the manifold are added to the planning graph

and used for learning in the next iteration.

We introduce an algorithm to learn configuration space

connectivity and guide sampling through narrow passages. We

call the approach sample-driven connectivity learning (SDCL),

and we integrate the learning procedure with a Probabilistic

Roadmap (PRM) [16]. SDCL has two major procedures, (1)

learning a manifold and (2) sampling the manifold, which

runs in parallel with the construction of PRM. This approach

effectively leverages the increasing parallelism of modern

multi-core and GPU computing in these two procedures.

The first step of SDCL is learning a binary classier from

the planning graph—though we will not use this classifier in

a typical fashion. Geometrically, the classifier is a manifold

in the configuration space, that essentially learns the critical

areas for connecting the separated graph components. The

second step of SDCL is to sample on the manifold, i.e., the

decision boundary of our classifier, and add these points to

the planning graph. We emphasize that (1) no training data

beyond the planning graph is required and (2) this learning

step happens as part of planning and learning times are

included in our experimental runtime results; modern GPU-

accelerated learning techniques [17] require only a small

fraction of total planning time to learn the manifold.

This learning and sampling process continues until we find

a valid path. Figure 1 shows this process for a 2D scene with

a long narrow passage. We learn the manifold that separates

the two classes; free space samples on the manifold discover

the must-connect regions between the two classes of nodes;
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and we add these samples to the planning graph for training

in the next iteration.

In section V, we perform experiments in narrow passage

scenes to evaluate the algorithm and an easy planning problem

scene to identify possible overhead. While a small overhead

is introduced in the easy problem, SDCL produces one

order of magnitude speedup in some of the narrow passage

scenes when compared with previous planners. Besides this

comparison, we note that SDCL may be applicable to other

planners beyond PRMs. Learning and sampling the manifold

could be used to guide sampling for other bi-directional or

multi-directional motion planners to improve planning in

narrow passages.

II. RELATED WORK

A. Guided Sampling

Sampling-based motion planning methods [2], [16] rapidly

cover the search space, typically using uniform random

sampling. For planning in narrow passages, however, uniform

random sampling usually requires a large number of samples

to discover the small free spaces in the configuration space,

especially in high dimensions [16]. Since sampling is key to

finding plans, one approach is to employ guided sampling

rather than uniform sampling. One of the generally applicable

sampling methods is Gaussian sampling [18], which produces

samples close to the obstacle region and is thus more likely

to cover narrow passages. Another sampling method, a bridge

test based sampling [19], is designed to increase the sampling

density in narrow passages based on local geometrical features

of narrow passages.

Previous work has also used topological tools in motion

planning to guide sampling. Some variations of RRT [8],

[9] control the exploring domain of the samples dynamically

using previous samples’ modified Voronoi regions. In recent

work [20], the authors use discrete Morse theory to identify

critical points near the obstacle region and build a topology

map for improved planning time and path cost, though this

method requires pre-processing to build the topology map.

The work in [21] represents fixed rotation sub-configuration

space explicitly with Minkowski sums, then uses it to create

collision-free samples in PRM. This method works for robots

with ellipsoid parts and translation-dominated motions.

There are also other strategic ways to guide sampling. The

KPIECE algorithm [22] uses multi-level grids in the search

space to guide sampling in less explored areas. Bi-directional

search [5] and lazy collision checking [23] combined with

KPIECE are effective in many scenarios. Motion planning

in quotient-spaces [24], [25] projects the configuration space

onto a series of lower dimensional spaces such that the lower-

dimensional paths serve as heuristics to guild sampling in

higher dimensions to improve the planning time, and the

authors also proposed a method for efficient exploration

around narrow passages [26]. The algorithm works best when

the configuration space is more decoupled (e.g., a mobile

base and robot manipulator on the base; the position and

orientation of single object).

Some approaches use information from previous samples

to guide current sampling. The tree expansion in [10] is

guided by calculating the useful directions and distances of

nearby spaces from previous sampling information. Learning

methods have been employed to guide sampling. In [27],

the authors learn a model of the configuration space, which

is improved online and used to determine sample validity,

reducing overall collision checking time in PRM. In [28],

the authors employ principal component analysis (PCA) to

detect narrow passage areas and improve sampling along the

passages. The work in [29] takes a multi-tree RRT approach

based on bridge tests and clustering, where a reinforcement

learning approach guides the selection of trees. In [30], the

algorithm biases sampling towards optimal path using a model

trained with previous planning/demonstration data.

Our work develops a novel guided sampling strategy that

learns from previous samples and interprets the learning re-

sults geometrically to sample in narrow passages. Experiments

show improved runtime when compared with previous works.

This algorithm is also applicable to bi-directional and multi-

directional planners if we consider it as a general sampler

like Gaussian sampling [18] and bridge-test sampling [19],

since it requires minimal change to the base planner.

B. Connection with Infeasibility Proofs

This work is inspired by the construction of infeasibility

proofs in [15], [31]. An infeasibility proof ensures that there

is no valid path between a start and a goal in a given motion

planning problem. In [15], infeasibility proof construction

uses the learned manifold as a strong heuristic to form a

polytope in Cobs that completely separates the start and the

goal. While this current work also uses configuration samples

to learn a manifold, the emphasis is now on using the manifold

to identify samples in narrow passages and returning these

samples for planning purposes. The two pieces naturally

follow one another. When constructing infeasibility proofs,

there is a negligible cost for the additional step to return the

samples for planning. On the other side, close integration of

SDCL and the base planner may also accelerate the learning

process to construct infeasibility proofs.

III. PROBLEM DEFINITION

We consider a motion planning problem [32] consisting of

a configuration space C of dimension n, start configuration

qstart, and goal configuration qgoal. The configuration space

C is the union of the closed set obstacle region Cobs and

the open set free space Cfree. Both qstart and qgoal are in

Cfree. Cobs and Cfree are implicitly defined through a validity

checker which provides a binary response indicating whether

a configuration q is valid (q ∈ Cfree) or not (q ∈ Cobs). A

feasible plan is defined as a path σ such that σ[0, 1] ∈ Cfree,

σ[0] = qstart, and σ[1] = qgoal. The goal is to efficiently

find such a path when there exist narrow passages.

The current work applies to kinematic motion planning

problems without differential constraints. We assume that

invalid configurations are only caused by the obstacle region
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Fig. 2: Block diagram of SDCL. The planning graph is shared

between two threads. Both threads contribute to the graph,

and the SDCL thread uses the graph for training. todo: change

graph to SDCL

and configuration space boundaries. Planning for dynamic

cases with narrow passages is part of our future work.

To apply the learning technique, we also assume that the

configuration space is a Euclidean space: configurations are

real-valued vectors with a Euclidean distance metric. This

assumption is suitable for a variety of configuration spaces,

including typical serial manipulators with joint limits. We

treat the boundaries of the configuration space (e.g. joint

limits) as a special obstacle region, which is described in

more detail in previous work [31].

IV. ALGORITHM

In this section, we explain our SDCL algorithm and

integration with PRMs [16]. SDCL thread runs in parallel

with the PRM thread and requires only minor modifications to

the PRM algorithm. We first briefly review PRM construction

and then describe the integration with SDCL.

The main data structure in a PRM is the roadmap—an

undirected graph G—where nodes are configurations and

edges indicate a feasible connection between two nodes.

Growing the roadmap iterates between two procedures. First,

the construction step picks a random sample, adds this new

sample to the roadmap, and tries to connect the new sample to

neighboring nodes in G. Second, the expansion step improves

the connectivity of G by choosing the difficult-to-connect

points and performing a random-bounce walk from these

points to reach other components in G. Integration with

SDCL requires a slight change in the construction step. When

sampling a new configuration, we not only add the free

space configurations to G, but also save the obstacle region

configurations in a separate set that we will later use to

sample points on the learned manifold.

SDCL directly contributes to the roadmap G by providing

more constructive samples for the narrow passage regions.

The overall process iterates between two steps: learning the

manifold and sampling the manifold (see Figure 2). The

following sub-sections cover these steps in more detail.

A. Learning the Manifold

In this step, we learn the manifold using the planning

graph G. If no plan has been found, then the start and goal

components in G are disconnected. We take all nodes in G’s

goal component (the graph component connectable to the

goal) as one class, and all other nodes of G as the other

(a) Current Iteration (b) Next Iteration

Fig. 3: Part of the learned manifold and points sampled on

the manifold, before and after we add the two Cfree manifold

points (yellow triangles) to the planning graph. The Cfree
manifold points connect to their nearest neighbors in the

planning graph (shown with dashed lines), and become part

of the training data in the next iteration.

class. Thus, we separate the nodes of G into two classes,

which are the input data to learn the manifold.

We learn the manifold as a classifier with the input

data. Our implementation uses a support vector machine

(SVM) with Radial Basis Function (RBF) kernel, which

learns a classification function F (x). While other learning

methods may also work for SDCL, the RBF-kernel SVM

has advantages for this application. It provides a closed-

form function with only one hyper-parameter (over-fitting

parameter γ), and SDCL is not sensitive to this parameter.

We use γ = 1 for all the experiment scenes. Further detail

on the using RBF-kernel SVMs to learn configuration space

manifolds is described in [15], [31].

Since we use the samples in G for training, the distributions

of samples also affect the learning results. For the experiments

we run in section V, Gaussian sampling [18] has advantages

over uniform sampling in some cases. Specifically, Gaussian

sampling produces samples close to the obstacle regions,

which may force the manifold into the narrow passage regions

faster. This is similar in concept to the analysis in [31].

The manifold is a separation in C for the two classes of

nodes in the planning graph. Figure 1 shows learned manifolds

for 2D case with a narrow passage as more points are added to

G and used for training. More closely in Figure 3, we see that

the two growing classes of nodes “push” the manifold to cross

the narrow passage regions, so we can use the manifold as a

heuristic to sample in the narrow passages for connectivity.

We describe this second step, sampling the manifold, next.

B. Sampling the manifold

The two classes of nodes from disconnected components

of G must connect with each other to form a path. Since the

manifold as the classifier decision boundary separates the two

classes, any valid path must cross the manifold, and more

precisely, a Cfree configuration on the manifold. To locate

Cfree configurations that could possibly form a valid path,

we sample points on the manifold and then use the validity

checker to test whether the point is in Cfree.

Sampling the manifold is similar in concept to the sampling

process in constrained motion planning [33]. Here, the

“constraint function” is the function of the manifold F (q).
We use the projection method to sample on the manifold.
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Starting from a given seed configuration q
s
, we solve the

following optimization problem to project this configuration

onto the manifold,

min
q
m

abs (F (q
m
))

s.t. q
m
∈ C ,

(1)

where q
m

is the sample on the manifold we want to find,

q
m
∈ C means the sample needs to follow the requirements

of the configuration space, e.g. joint limits. The optimization

problem minimizes the absolute value of the manifold

function, which could potentially be any learned manifold

function, as long as the value and gradient of the function can

be calculated. We solve equation (1) using sequential least-

squares quadratic programming (SLSQP) [34], [35], [36],

though other optimization methods may also be applicable.

We use samples found in the PRM’s construction step as

seeds to solve (1). All samples, including the samples in Cobs,
are potentially useful for sampling the manifold, which is why

we modify the PRM’s construction step to save the samples

in Cobs. However, there are trade-offs in the set or subset of

PRM samples to use as seeds. Using fewer seeds requires less

time for the projection calculations. On the other hand, more

seeds generate more samples on the manifold, increasing the

likelihood that the samples will lie in the narrow passage

Cfree regions. This selection of which PRM samples to use as

seeds could be a user-specified option to SDCL. We evaluate

and discuss the impacts of seed selection further in section V.

While sampling on the manifold, we add all Cfree points on

the manifold to G. Adding these Cfree points to G is similar

to adding new samples in the PRM construction step. We

first add the Cfree point to G as a separate component by

itself, then try to connect the point to its nearest neighbors

in G, which is described in more detail in [16]. Figure 3

shows the result of adding the Cfree manifold points in two

consecutive iterations.

The process of learning and sampling the manifold con-

tinues until a valid path is found or the time limit is reached

(see algorithm 1). First, we acquire the input data from the

planning graph G (line 2) and use it to train the manifold

(line 3). Then, we sample the manifold by solving (1) (line 5)

for each given configuration. If we successfully solve the

optimization and the resulting manifold point is in Cfree, we

add the point to G. Sampling the manifold for each seed

configuration is embarrassingly parallel, enabling efficient

use of modern multi-core CPUs.

C. Discussion

SDCL retains the probabilistic completeness of the under-

lying planner because it only adds additional samples to the

planning graph. The planning graph is still generated by an

underlying planner (e.g., a PRM). In the worst case, samples

added by SDCL are useless (and might make planning

slower), but the PRM still has its own sampling process

and is probabilistically complete.

SDCL is broadly applicable to geometric motion planning

problems. The learning and sampling process does not require

Algorithm 1: SDCL

Input: G; // Planning Graph

Input: Q; // Set of configurations

Output: G; // Planning Graph

1 repeat

2 Prest, Pgoal ← Acquire-Input-Data(G);
3 f ← train-SVM(Prest, Pgoal);

#pragma parallel for

4 foreach q ∈ Q do

5 qm ← sample-manifold(q, f);
6 if qm ∈ Cfree then

7 add-sample(G,qm);

8 until Timeout or Found path;

any additional functions other than the validity checker,

which is common to all sampling-based motion planners.

Additionally, the user can specify whether to use Gaussian

sampling, and possibly subsets of configurations as seeds for

sampling the manifold.

Although we use a PRM as the base planner for this

section’s description and our experimental evaluation, SDCL

is not limited to PRMs. SDCL could be applied to other

bi-directional or multi-directional planners, as long as we

know which samples of the planning graph or tree are in

the goal and non-goal components to learn the manifold. For

example, with RRT-connect [5], we can use the start tree

nodes as one class and the goal tree nodes as the other class.

In general, SDCL can serve as an additional sampler that

produces constructive samples for difficult-to-reach areas. One

topic for future work is to evaluate which base algorithms

benefit from SDCL and provide the fastest planning results.

V. EXPERIMENTS

We run experiments in four scenes with narrow passages:

one 3D rigid body scene, two serial manipulator scenes,

and one multi-robot navigation scene. We implement SDCL

with PRM (SDCL-PRM), and compare with earlier planners

to demonstrate its effectiveness in reducing total runtime.

We profile the different procedures in SDCL to identify and

discuss future improvements. To demonstrate the potential

overheads introduced while using SDCL, we also do experi-

ments in simple planning scenes. All code is available1.

We train the RBF-kernel SVM using ThunderSVM [17],

which accelerates learning using GPUs. GPU acceleration

is crucial because we train online while the planner is

running. With GPU SVM training, the learning step only

takes a couple of seconds. To evaluate the increase in speed

from GPUs and to parallelize manifold sampling, we run

our experiments on a server machine with NVIDIA TU102

GPU and a dual CPU AMD EPYC 7402 with 24 cores

per CPU. We adapt PRM [16] in OMPL [6] to run in

parallel with SDCL. We solve the nonlinear optimization

1http://sdcl.dyalab.org

4 of 7

http://dx.doi.org/10.1109/ICRA48891.2023.10161339
http://sdcl.dyalab.org


ICRA 2023 http://dx.doi.org/10.1109/ICRA48891.2023.10161339

START

GOAL

(a) 3D free body (Twistycool).

GOAL

START

(b) 6-DOF manipulator scene.

START

GOAL

(c) 7-DOF manipulator scene.

START

GOAL

(d) Multi-robot scene.

Fig. 4: Experiment setup.

problem for sampling the manifold using sequential least-

squares quadratic programming (SLSQP) [34], [35], [36].

We check collisions and penetration depth using the Flexible

Collision Library [37], and we model robot kinematics using

Amino [38]. All robots use primitive shape collision geometry

models for faster collision checking.

We run 30 trials for each experiment scene using our plan-

ner and baseline planners in OMPL. There are many planners

in OMPL, and not all focus on quickly finding feasible plans,

e.g., some focus instead on asymptotic optimally [4], [39] at

the cost of typically slower runtime. For a more interpretable

and even evaluation, we compare against feasible planners that

are either (1) widely used or (2) offer competitive runtimes

with our approach. We include SDCL results with the base

PRM using Gaussian sampling and uniform sampling, and

we use samples in both Cobs and Cfree as seeds to sample the

manifold. We set timeout limits for the scenes. When planners

timeout, they usually report a runtime that is slightly over

the timeout limit. We use the reported runtime to calculate

the mean and standard deviation, even in timeout cases.

A. Experiment Scenes and Results

1) Single rigid body: We use a classic free body narrow

passage problem, the “Twistycool” problem [6], [40]. As

shown in Figure 4a, the goal is to move a twisty 3D object

from one side to the other through a small open window. The

object must rotate in accordance with its shape to prevent

colliding with the window because it is less in size than its

bounding box. We use a 300 seconds timeout limit in all

the trials. SDCL-PRM with uniform sampling solves all 30

trials and is the fastest among all planners. The second fastest

planner is TRRT [41], which solves 28 out of 30 trials.

2) 6-DOF serial manipulator: In this scene, we use a

manipulator structure similar to the Universal UR5 robot [42].

The goal is to reach the blue spot on the table, which is

covered by a shelf that makes tight spaces. Figure 4b shows

the start and goal configurations. The timeout is 200 seconds.

Table I shows the experimental results. SDCL with Gaussian

sampling solves all trials, with an average runtime of 4.53

seconds. The closest baseline planner is BiTRRT [43], which

solves 27 of 30 trials with 10 times higher average runtime.

3) 7-DOF serial manipulator: We use a manipulator that

is similar in structure to the Schunk LWA4D [44] in these

experiments. The goal in the scene is to reach in between

the two red obstacles on the shelf from outside of the shelf.

Figure 4c shows the start and goal configurations. The timeout

is 300 seconds. Table I shows the results. SDCL solves all

the trials and is about 8 times faster than the closest baseline.

4) Communication-constrained Multi-Robot Navigation:

In this experiment, we consider a multi-robot scene where the

line of sight (i.e., for communication [45]) must be maintained

between pairs of robots while exploring a narrow passage. In

Figure 4d, the goal is to traverse and cover an “L” shape tunnel

with three point robots while maintaining line of sight (the

figure is modified for clarity; actual setup has a much narrower

“L” passage). SDCL with Gaussian sampling is slightly slower

than the best baseline planner by a few seconds.

5) Easy scenario to evaluate overhead: We setup an easy

tabletop planning problem with the same 6-DOF manipulator

in subsubsection V-A.2 to evaluate potential overheads of

SDCL. The scene is similar to Figure 4b, but using an empty

table. The result is in Table I. SDCL introduces overhead

when compared with PRM. This overhead mainly comes from

starting the training process. Note the unit in this column is

milliseconds, so the average overhead introduced is a fraction

of a second.

B. Experiments with Varying Difficulty

Besides the above experiments, we also test the change

in runtime for varying levels of difficulty in the 7-DOF

scene. We make the scene easier or harder by changing the

distance between the two red cylinder obstacles, producing

a corresponding change in the configuration space narrow

passage. The easy case has an obstacle distance (surface to

surface) of 1.66 times the end-effector size (a square box).

The medium case is the original scene in Figure 4c. The hard

case has an obstacle distance of 1.16 times the end-effector

size. In this comparison, we only include the three other

better performing planners, that is, BiTRRT [43], LBKPiece

(Lazy Bi-directional KPIECE) [22] and SBL [46].

Figure 5 shows the increase in runtime from the easy case

to the hard case. SDCL-PRM uses Gaussian sampling. As we

can see, SDCL-PRM, BiTRRT, and LBKpiece have about the

same average runtime in the easy case, and SBL is worse than

these three. In the medium case, BiTRRT and LBKpiece’s

average runtime both increase by about 10 times, while

SDCL-PRM increases by only a few seconds. In the hard

case, the three baseline planners timeout in more than half of

the trials, while SDCL-PRM runs all trials successfully with

an average runtime of 23 seconds. These varying difficulty

experiments indicate that sampling with SDCL is robust in

revealing narrow passages in the configuration space even

when the problem becomes more difficult.
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3D free body 6-DOF manipulator 7-DOF manipulator Multi-Robot Easy Scene

Mean (s) ±STD Solved Mean (s) ±STD Solved Mean (s) ±STD Solved Mean (s) ±STD Solved Mean (ms) ±STD

SDCL-PRM-U 78.99 ±51.03 30/30 4.94 ±2.37 30/30 12.32±5.90 30/30 77.08 ±38.29 30/30 164.33 ±153.62

SDCL-PRM-G 109.32 ±69.38 30/30 4.53 ±2.38 30/30 12.36 ±13.67 30/30 41.64 ±14.86 30/30 164.05 ±154.16

KPIECE1 301.04 ±0.17 0/30 200.06 ±0.03 0/30 300.05 ±0.03 0/30 99.03 ±98.01 19/30 8.92 ±7.53

LBKPIECE1 300.97 ±0.19 0/30 180.36 ±55.07 4/30 95.18 ±114.05 25/30 119.12 ±87.09 16/30 19.68 ±9.88

BKPIECE1 300.81 ±0.14 0/30 179.69 ±42.59 7/30 216.01 ±109.31 14/30 37.02 ±20.22 30/30 12.75 ±5.72

BFMT 290.10 ±36.66 4/30 172.44 ±54.37 7/30 271.94 ±73.40 4/30 195.15 ±18.92 2/30 194.18 ±8.01

RRT 282.51 ±49.53 5/30 200.07 ±0.03 0/30 300.06 ±0.03 0/30 200.05 ±0.03 0/30 5.07 ±3.41

RRTConnect 299.85 ±1.74 1/30 200.06 ±0.03 0/30 298.53 ±8.17 1/30 200.06 ±0.03 0/30 2.72 ±0.27

LazyRRT 301.18 ±1.70 0/30 252.95 ±93.73 0/30 325.86 ±43.07 0/30 201.64 ±5.34 0/30 1.69 ±0.04

TRRT 106.55 ±82.15 28/30 200.06 ±0.03 0/30 300.05 ±0.03 0/30 111.06 ±87.55 16/30 4.73 ±2.32

BiTRRT 131.44 ±112.04 27/30 49.07 ±60.11 27/30 97.50 ±62.80 30/30 55.63 ±63.47 27/30 1.75 ±0.06

EST 300.07 ±0.03 0/30 200.06 ±0.03 0/30 300.06 ±0.02 0/30 200.05 ±0.03 0/30 2.02 ±0.84

SBL 301.34 ±0.66 0/30 195.77 ±17.27 2/30 211.71 ±100.50 16/30 168.37 ±53.52 9/30 12.01 ±6.33

PRM 189.06 ±97.45 23/30 200.23 ±0.03 0/30 300.24 ±0.04 0/30 202.04 ±0.03 0/30 5.76 ±9.52

LazyPRM 300.11 ±0.07 0/30 200.07 ±0.05 0/30 300.06 ±0.03 0/30 201.31 ±6.50 0/30 1.73 ±0.04

TABLE I: Runtime comparison of all the scenes, 30 trials for each planner, SDCL-PRM-G is SDCL with PRM and Gaussian

sampling, SDCL-PRM-U is SDCL with PRM and uniform sampling.

3D free body 6-DOF manipulator 7-DOF manipulator Multi-Robot

Uniform Gaussian Uniform Gaussian Uniform Gaussian Uniform Gaussian

Total (s) 78.76 ±50.92 108.99 ±69.24 4.94 ±2.37 4.53 ±2.38 12.32 ±5.90 12.36 ±13.67 77.08 ±38.29 41.64 ±14.86

Training itr. 11.83 ±1.09 8.97 ±0.81 81.00 ±16.56 46.17 ±14.35 195.97 ±53.90 73.37 ± 20.50 31.73 ±7.69 44.63 ±9.78

Training (s) 14.09 ±6.75 13.43 ±7.60 1.62 ±0.81 1.51 ±0.75 3.65 ±1.52 2.25 ±0.97 7.46 ±3.95 5.68 ±1.99

Sampling (s) 64.50 ±44.45 95.45 ±61.95 2.98 ±1.49 2.83 ±1.56 7.70 ±4.08 9.75 ±13.41 67.24 ±34.36 33.55 ±12.00

TABLE II: Runtime statistics (mean ±STD) for SDCL-PRM in all the scenes.

Fig. 5: Compare 7-DOF scenes with different hardness levels.

Table is showing “average runtime (s) | solved cases”. 30

trials for each planner and each difficulty level.

C. Discussion of Experiments and Future Work

Table II shows the runtime statistics. SDCL with Gaussian

sampling usually takes fewer learning and sampling iterations

than Uniform sampling because Gaussian sampling samples

close to Cobs, which forces the manifold into Cobs and narrow

passages faster [31]. In the multi-robot scene, using Gaussian

sampling has significant advantages. However, Gaussian

sampling does not always provide the best sample distribution

for learning (the free body scene). Future investigation is

required to decide the base planners’ sampling strategies.

In all scenes, the sampling time is longer than the training

time, especially in the multi-robot scene and the free body

scene, where the average runtime is also much higher because

of the long sampling time. Reducing sampling time is

one direction of future work. Relating to the discussion in

section IV on how the number of seeds influences sampling

time and overall results, we can apply more filters to the seeds

to reduce the number of unnecessary projection calculations

that would produce Cobs samples.

SDCL is especially effective in the manipulator scenes,

producing one order of magnitude improvement, and it is

competitive in the free body scene and the multi-robot

scene. However, there are limitations. Currently, SDCL

cannot handle kinodynamic motion planning problems, which

planners like KPIECE [22] support, because the learned

manifold needs to exist in a Euclidean space. Additionally,

scaling SDCL to very high dimensions, as handled by planners

like QRRT [25], may pose challenges because learning and

sampling the manifold would be more time-consuming. In

general, SDCL excels in tightly coupled configuration spaces

with extremely narrow passages connecting two parts of Cfree.

For example, we could apply SDCL to the quotient spaces if

the full configuration space is more decoupled.

Another direction of future work is to generalize SDCL

as a sampler to support other planners, i.e., planners with a

data structure suitable for learning a classifier, and compare

the effect of SDCL in RRT-type and PRM-type algorithms.

VI. CONCLUSION

We presented a configuration space learning algorithm,

coupled with a PRM, to improve kinematic motion planning

in narrow passages and evaluated performance on a free 3D

body, serial manipulators, and multi-robot navigation to show

the efficiency of our algorithm. The algorithm is effective

for solving the manipulator narrow passage problems with

an order of magnitude speedup, despite the small overhead.
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[43] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
RRT to deal with complex cost spaces,” in 2013 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2013, pp.
4120–4125.

[44] “Industrial robots,” Oct 2021. [Online]. Available: https://schunk.com/
us en/solutions/industry-solutions/list/industrial-robots/

[45] M. A. Schack, J. G. Rogers, Q. Han, and N. T. Dantam, “Optimizing
non-Markovian information gain under physics-based communication
constraints,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4813–4819, 2021.

[46] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics

research. Springer, 2003, pp. 403–417.

7 of 7

http://dx.doi.org/10.1109/ICRA48891.2023.10161339
http://github.com/stevengj/nlopt
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/
https://schunk.com/us_en/solutions/industry-solutions/list/industrial-robots/
https://schunk.com/us_en/solutions/industry-solutions/list/industrial-robots/

	I Introduction
	II Related Work
	II-A Guided Sampling
	II-B Connection with Infeasibility Proofs

	III Problem Definition
	IV Algorithm
	IV-A Learning the Manifold
	IV-B Sampling the manifold
	IV-C Discussion

	V Experiments
	V-A Experiment Scenes and Results
	V-A.1 Single rigid body
	V-A.2 6-DOF serial manipulator
	V-A.3 7-DOF serial manipulator
	V-A.4 Communication-constrained Multi-Robot Navigation
	V-A.5 Easy scenario to evaluate overhead

	V-B Experiments with Varying Difficulty
	V-C Discussion of Experiments and Future Work
	VI Conclusion
	References


