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Optimization-Based Robot Team Exploration

Considering Attrition and Communication Constraints∗

Matthew A. Schack† John G. Rogers‡ Qi Han† Neil T. Dantam†

Abstract— Exploring robots may fail due to environmental
hazards. Thus, robots need to account for the possibility of failure
to plan the best exploration paths. Optimizing expected utility
enables robots to find plans that balance achievable reward
with the inherent risks of exploration. Moreover, when robots
rendezvous and communicate to exchange observations, they
increase the probability that at least one robot is able to return
with the map. Optimal exploration is NP-hard, so we apply a
constraint-based approach to enable highly-engineered solution
techniques. We model exploration under the possibility of robot
failure and communication constraints as an integer, linear
program and a generalization of the Vehicle Routing Problem.
Empirically, we show that for several scenarios, this formulation
produces paths within 50% of a theoretical optimum and
achieves twice as much reward as a baseline greedy approach.

I. INTRODUCTION

Using multiple robots to explore an unknown area has

the potential to construct maps more efficiently by exploring

multiple regions simultaneously. Yet robots face hazards in

many scenarios [1]; conditions in the environment may cause

robots to get stuck, lost, or otherwise fail. Robots that fail

before communicating new observations will not contribute

to the team’s map, so robots may need to form subteams

that explore together to ensure that at least one robot in

each subteam transmits the map updates. Moreover, wireless

communication between robots itself presents challenges due

to communication range limits or obstacles, so the team may

not know that a robot outside communication range has failed.

To best explore, a robot team must balance efficiency and

speed of concurrent exploration with robustness of forming

subteams with multiple robots. Furthermore, exploration will

typically reveal new areas to explore; thus, exactly computing

optimal explorations paths from limited initial knowledge is

not generally possible. Instead, each robot subteam must be

able to quickly update plans with new information.

To address these aforementioned issues, we adopt the game-

theoretic notion of expected utility [2], providing a metric

for reward (i.e., new information) over a path balanced with

the likelihood of achieving the reward (i.e., the probability

that the robot will not fail). While the expected utility of

a particular path can be directly and efficiently computed

using a probabilistic graphical model, planning the utility-

optimal path presents a computational challenge. We prove
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Fig. 1: Overview of exploration with communication and

attrition. All robots start within communication range and

plan assignments of unknown space to explore as well as

rendezvous points and times to communicate observations.

Robots may fail, so they work in subteams to improve

reliability. At the scheduled time, robots rendezvous to share

info with other subteams and the base station.

that finding the utility-optimal path is NP-hard through a

reduction from the NP-hard Traveling Salesman Problem [3].

We present an optimization-based approach for multi-robot

exploration that maximizes expected utility while accounting

for the possibility of robot attrition and communication

constraints (Fig. 1). The exact optimization problem is

inherently nonlinear, so it is generally not possible to

efficiently find the true optimum (see Sec. III). Instead, we

design an integer, linear program to efficiently approximate

the optimal solution (see Sec. IV), and we develop a recursive

subteaming approach to explore newly revealed areas (see

Sec. IV-G). We empirically evaluate the optimality of our

approximation and its computational performance in Sec. V.
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II. RELATED WORK

This paper addresses robust exploration using multiple

robots and under the possibility of robot failure. We next

review related work in robot exploration, coverage, and

navigation under uncertainty.

Leading approaches in exploration focus on efficient man-

agement of a group of robots and scalability to many robots.

Decentralized approaches [4], [5], [6] have shown the ability

to scale to many robots, but they may get stuck in local optima.

Conversely, algorithms that incorporate information gain [7],

[8], [9], approaches for active information acquisition [10],

[11], or goal assignment [12], [13] produce results closer to a

globally optimal path but at a cost to scalability. Additionally,

exploration algorithms that consider communication require-

ments [14], [15] provide insight applicable to cluttered or

otherwise constrained environments. Our work differs from

existing works by explicitly addressing the possibility of

robots failing during exploration.

The robot coverage problem tasks a group of robots

to revisit an already-explored area with the possibility of

robot failures. Leading approaches account for failures by

decomposing the space into regions and adding a robot to

existing regions if a robot fails [16], taking over a failed

robot’s work once a different robot completes its assigned

task [17], or immediately reassigning robots when a robot

fails [18]. However, in the coverage problem there is no

unknown area. Also, communication is typically assumed to

be perfect, which implies that the robot group is immediately

aware of a robot failure. Our work focuses on exploring new

areas under communication constraints, i.e., a robot failure

may not be immediately detected by other robots.

Works that consider uncertain exploration can also be ap-

plied to mitigate risk during exploration. Leading approaches

for uncertain exploration construct a Partially Observable

Markov Decision Process (POMDP) [19], [20], which com-

putes a policy for what the robots should do in all possible

scenarios. While such approaches generate optimal solutions,

as the size of the map and the number of robots grow, the

computational time to make the policy increases—the curse

of dimensionality. In contrast, our approach computes a single

path, which while not guaranteed to be optimal, can be

calculated more quickly.

III. PROBLEM DEFINITION AND PROBABILISTIC MODEL

We define the attrition-aware multi-robot exploration prob-

lem (AAMREP) where we seek to maximize the expected util-

ity at the base station—i.e., maximize the information gained

at the base station while accounting for the possible robot

failures during exploration. Robots communicate observations

to teammates and the base station; however, a robot that fails

during exploration loses all the untransmitted information—

i.e., we adopt a conservative approach and assume all failure

is catastrophic. Thus, optimal paths need to balance the risk

of failure during exploration with the estimated information

gain reward. We next define the variables and functions for

cost and information gain that will be used in our problem

definition.

Definition 1. Σ =
(

R,X , x[0], b,Wc,Wg,Wk, a,Mknown

)

where,

• R is a finite set of robots,

• X =M|R| is the multi-robot configuration space, where

each M is the space of a single robot—e.g. SE(2),
SE(3), or R

n,

• x[0] ∈ X is the initial multi-robot configuration.

• b ∈M is the position of the base station,

• Wc :M×M 7→ R is a signed communication function,

where positive values indicate that communication is

possible between the two positions,

• Wg :M 7→ R
+ is a function that maps from an observed

point to information gained,

• Wk :M×M 7→ R
+ is a cost function to move between

two points—e.g., distance, time, or energy.

• a ∈ [0, 1] is an attrition probability per unit cost,

• Mknown ¦M is the known map.

Single-robot space M consists of disjoint free space

Mfree and obstacle region Mobs. A multi-robot config-

uration is valid if the position of each individual robot is free:

Xvalid =
{

(m1, . . . ,m|R|) ∈ X
∣

∣ each mi ∈Mfree

}

.

Initially, the robots have knowledge only of Mknown, and

the rest of the map is unknown: Munknown =M\Mknown.

We assume a discrete, finite representation of the map, e.g.,

an occupancy grid, roadmap, or octree. Note that positions in

Munknown can still be in free space Mfree or the obstacle

regionMobs, thus attempting to plan through Munknown could

result in infeasible paths.

The base station gains information by communicating

with robots, and robots gain information either by direct

observation (i.e., traveling to an unknown area and sensing

the area) or by obtaining information via communicating

with other robots. Information gained at the base station

is the sum of Wg over observations received. However,

we must account for the possibility that robots fail before

communicating observations. Thus, we find optimal paths

based not on reward—i.e., information gain, but on game-

theoretic expected utility—i.e., reward scaled by likelihood

of achieving that reward.

A. Observation Likelihoods

The likelihood of a robot or the base station receiving an

observation depends on (1) a robot reaching a position to

make the observation and (2) two robots or the base station

communicating the observation. We model likelihoods using

random variables representing robot i arriving at a position,

xi; observing an unknown point, oi; or communicating with

robot or base station j, ci,j . Since we assume a discrete map

ofM, there are finite number of positions and observations to

consider. For any specific path σ : [0, 1] 7→ X , there are finite

number of events, which occur when robots reach a position to

observe or communicate, so we need to only consider random

variables over a finite number of timesteps. We model the

random variables and dependencies as a Dynamic Bayesian

Network (DBN) in Fig. 2.

The likelihood that robot i reaches position x at timestep

k and for path σi depends on accumulated cost (Wk) and
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Fig. 2: Dynamic Bayesian Network fragment for a robot i and base station b over two timesteps, k, k + 1. The variables

represent the likelihood of a robot or the base station arriving at a position (x), communicating with one another (c), and

observing a single point (o). Subscripts denote the robot the random variable refers to and arrows on the DBN correspond to

dependencies between the random variables. Horizontal dotted lines show dependencies from preceding to future timesteps,

and the dashed lines separate the timesteps.

the attrition rate (a):

P
(

xi
[k]
∣

∣

∣xi
[k−1]

)

= (1− a)
Wk(σi(k),σi(k−1))

. (1)

The likelihood that two robots can communicate is the

probability that a network path exists between them. A

network path exists when Wc g 0 for all robots in the

path. Wc is deterministic, so the uncertainty arises from the

probability of a robot reaching a position according to attrition

rate (1)—i.e., the probability that the robot has not failed.

For a specific path σ, we construct and evaluate a DBN

to determine the probabilities that the base station has each

observation o at final timestep h′,

L(o,σ) = P
(

ob
[h′]
)

. (2)

B. Expected Utility

The expected utility We for path σ depends on likelihoods

of observations L and corresponding information gain Wg ,

We (σ) =
∑

o∈Munknown

L (o,σ)Wg (o) . (3)

We assume that the gain from each observed point, o, is

independent of other points, consistent with other information

theoretic works [21] and typical occupancy grid assumptions.

The solution to the problem defined by Def. 1 is a path σ

that is feasible and maximizes expected utility.

Definition 2. An information-optimal path σ solves,

max
σ

We (σ)

s.t. σ[0, 1] ∈ Xvalid ' σ(0) = x[0] .

Def. 2 specifies optimal paths over the entire space M.

However, paths that move into unknown space could be

infeasible (Munknown ∩Mobs), and paths that stay in known

map Mknown may be suboptimal, as the optimal path could

move through the unknown but still valid space (Munknown ∩
Mfree). Consequently, we must incorporate new observations

during exploration. Precomputing a policy to respond to all

combinations of free and obstacle portions of Munknown would

be computationally challenging, if not intractable. Instead,

we develop a recursive approach to explore and plan.

IV. APPROACH

We develop an approach to find paths that optimize

expected utility (i.e., expected information gain) according

to Def. 2. When the entire robot team is in communication,

the team divides into subteams, and they plan paths to the

boundaries of the known space—i.e., frontiers [22]—along

with rendezvous locations to communicate their observations

after exploration. Then, when subteams reach frontiers, they

recursively plan based on the newly explored space. Finally,

subteams rejoin at rendezvous points and ultimately relay

observations to the base station.

Because most of the information comes from unknown

points, we only consider reward from unknown space, rather

than over the entire path, to improve scalability. To estimate

the maximum reward from exploring unknown space, we

partition the unknown space into frontier regions. There are

many partition approaches, such as using k-means cluster-

ing [23] or Voronoi diagrams [24]. Empirically, we found a

Voronoi-based partitioning worked well for our experiments.

Based on the partitioning, we estimate the maximum reward

for a single frontier by summing information gain Wg over

all unknown points—i.e., we assume unknown space is free.

Our approach plans paths for robots by choosing which

robots should explore which frontiers in which order before

rendezvous with other robots and finally returning to the base

station. The Vehicle Routing Problem (VRP) [25] addresses

robots that visit a sequence of points and return to a starting

location—without communicating. Thus, we formulate our

approach as an extension of the VRP to include the ability

to communicate.

A. Background on the Vehicle Routing Problem

We briefly summarize the typical formulation for the VRP;

please see [25] for a more thorough discussion. The VRP is

defined as (R,Q), where R is a set of vehicles (robots) and

Q is an undirected, weighted graph of points to visit (goals)

as well as start s and end e locations. s and e represent the

same physical location but are represented separately in Q
to track when robots arrive at the end. Every graph edge has

two weights, a path cost cqq′—given by Wk—and a time,

tqq′ , needed to travel between any two points. The vehicles

must visit every goal in Q and return to e before the final

time h while minimizing the total travel cost.
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The VRP is typically modeled as an integer, linear program

(ILP) with decision variables specifying paths for each robot.

The typical model for the VRP contains continuous variables

xrq representing when robot r arrives at point q and binary

decision variables encoding paths, αrqq′ , defined to be one if

and only if robot r travels between from q to q′. Robots can

remain at a point, so we add another continuous variable yrq
representing the time a robot leaves a point.

Solutions to the VRP minimize the path cost, while

ensuring that some robot visits every goal before the final

time, h. The constraints ensure that a path starts at s, visits

some sequence of points, and then returns to e. The solution

is a continuous time path given by the arrival and leaving

times (xrq and yrq) for every point.

Some requirements of the VRP couple continuous and

binary decision variables, which could, result in a nonlinear

constraint if binary variables are multiplied by continuous

ones. To formulate such requirements as linear constraints—

e.g., (10), [25] formulates all constraints comparing binary

and continuous decision variables as inequality constraints,

and multiplies the binary variable by a constant large enough

that the constraint is always satisfied for one value of αrqq′ .

We use this technique—i.e., big M [26], in our formulation.

Fig. 3 summarizes the objectives and constraints of the

VRP. Constraints (5) and (6) ensure that every robot begins at

starting location s and ends at final location e. Constraint (7)

ensures each robot enters and leaves a point through exactly

one path, and constraint (8) ensures that each point is visited

exactly once. Constraints (9) and (10) ensure that the time

when a robot leaves a point, yrq , is after it arrives, xrq , and

before it arrives at the next. Constraints (11) and (12) ensure

that no points are visited after the final time, h.

B. Extensions to the VRP and NP-Hardness

We extend the VRP formulation in Sec. IV-A to address

the exploration problem of Def. 2. The globally optimal path

may move through unknown space, so it is not possible to

exactly compute such a path. Instead, we finds paths through

known space to reach frontiers while deciding the amount

of time for exploration of frontiers, a decision not addressed

by the VRP. Additionally, the VRP explicitly constrains each

robot to return to the ending location; though returning to an

end location is not an explicit requirement in our problem,

we prove in Sec. IV-C there is an optimal path where every

robot returns to the base station. By planning for time to

explore frontiers and eventually returning to the base station,

robot subteams can recursively plan when they arrive at the

frontier, finding a sequence of near-optimal paths.

Next, we prove that AAMREP is NP-Hard through a

reduction from the NP-hard Traveling Salesman Problem [3].

We reduce the TSP to AAMREP by constructing an AAMREP

with one robot and every TSP goal point as a frontier with

information gain large enough that the optimal solution is

to visit every frontier. Since there are no other robots to

communicate with, the solution to Def. 2 would be to visit

every frontier at the lowest cost. Thus an answer to AAMREP

would be an answer to TSP, therefore AAMREP is NP-hard.

min
∑

r∈R

∑

q∈Q

∑

q′∈Q

cqq′αrqq′ (4)

s.t.
∑

q∈Q

αrsq = 1 ∀r ∈ R (5)

∑

q∈Q

αrqe = 1 ∀r ∈ R (6)

∑

q′∈Q

αrq′q =
∑

q′∈Q

αrqq′ ∀r ∈ R, q ∈ Q \ {s, e}

(7)
∑

r∈R

∑

q′∈Q

αrq′q = 1 ∀q ∈ Q \ {s, e} (8)

xrq f yrq ∀r ∈ R, q ∈ Q (9)

yrq + tqq′ − xrq′ f

(h+ tqq′) (1− αrqq′)
∀r ∈ R, q, q′ ∈ Q (10)

yrq f h
∑

q′∈Q

αrqq′ ∀r ∈ R, q ∈ Q (11)

yre = h ∀r ∈ R (12)

Fig. 3: Objective and constraints for the VRP [25]. R is the

set of robots and Q is the set of points. αrqq′ represents the

choice for robot r to take the path from q to q′, where cqq′

and tqq′ are the cost and travel time of that path respectively.

We track the arrival time, xrq, and departure time, yrq, for

each robot r at each point q. h represents the final possible

time, and points s and e represent the start and end locations.

The NP-hardness of AAMREP means that optimal solutions

will, in general, be computationally intractable, even when

planning through Mknown. Thus, the rest of our approach

focuses on tractable approximations of an optimal solution.

C. Ending paths at the base station

Though AAMREP does not explicitly require robots to

return to the base station, we prove that an optimal path must

exist in which every robot returns to the base station. Since

there is such an optimal path ending at the base station, we

are able to retain constraint (6) for robots to reach the base

station. We prove robots may optimally complete paths at

the base station by showing, for all cases where a robot ends

its path elsewhere, there is a path where the robot ends at

the base station with the same or greater expected utility.

Proposition 1. A robot, whose (1) path does not end at the

base station and (2) observations are all received by the base

station, has expected utility equal to a path where the robot

ends at the base station.

Proof. Expected utility increases either by (1) increasing

likelihood a particular observation is received by the base

station; or (2) new observations being received by the base

station. The base station has all the robot’s observations,

so the robot cannot (1) increase (or decrease) likelihood of

the base station having an observation or (2) provide new

observations to the base station.

4 of 8

http://dx.doi.org/10.1109/IROS51168.2021.9636029


IROS 2021 http://dx.doi.org/10.1109/IROS51168.2021.9636029

Proposition 2. If a robot’s path ends with observations not

received by the base station, then there exists a path with

greater or equal expected utility ending at the base station.

Proof. Likelihood is strictly non-negative. Regardless of

path cost, returning to the base station will never decrease

likelihood of the base station receiving the untransmitted

observation. Thus, it is always optimal to return to the base

station with untransmitted observations.

Proposition 3. An optimal path must exist where every robot

ends its path at the base station.

Proof. A robot that does not end at the base station either has

or has not transmitted all of its observations to the base station.

Prop. 1 and Prop. 2 prove for both cases that returning to the

base station provides equal or greater expected utility.

D. Robot Teaming and Exploration

Unlike the VRP, AAMREP permits multiple robots to

visit frontiers for exploration or a rendezvous points for

communication. We model multiple robots in a subteam as

the set of robots visiting the same frontier. The behavior of a

subteam exploring a frontier is different than their behavior

at a rendezvous point—i.e., they recursively plan to explore

unknown space at a frontier, and they wait and communicate at

a rendezvous points. To distinguish frontiers and regular space,

we create a new set of points, f ∈ F ¦ Q, that contain just

the frontiers—i.e., points where robots can explore. We keep

non-frontier points for possible communication locations—

e.g., the base station. We capture the decision for a robot

to explore a frontier with βrf which is one if and only if

robot r explores frontier f . We define a subteam as the set of

robots r exploring the same frontier f , {r ∈ R | βrf = 1}.
We remove constraint (8) so multiple robots may visit the

same point, and add (13) so any robot visiting a frontier,

given by αrqf , is in the subteam exploring it.
∑

q′∈Q

αrq′f = βrf ∀r ∈ Rf ∈ F (13)

We ensure that robot subteams remain together by restrict-

ing teams to arrive and leave at the same time.

E. Exploration Constraints and Objective

When a subteam explores a frontier, it gains information

dependent upon its observations. We model the available

information and how much information a subteam obtains

from exploring a frontier. However, we do not know the

composition of unknown space (by definition), so we estimate

the maximum information available at a frontier.

We estimate the maximum information gained from a

frontier with the constant, df , defined as the sum of Wg

over an entire frontier, and add the decision variable zrf
as the amount of information robot r gains from frontier f .

Tracking which robot has information about which frontier is

not necessary for computing the reward at the base station (as

all robots will return to the base station); however, we must

know which robots have observations about which frontiers

for correct communication in Sec. IV-F.

We construct a linear approximation of (3) for an objective

function in the ILP, approximating the optimal solution

to Def. 2. We consider paths through only known space,

though the true optimal solution may move through unknown

space, which is not possible to find. However, our experiments

show that the linear approximation was within around 50% of

the theoretical upper bound of optimal paths through known

space. Expected utility (3) can increase three ways: new

information arriving at the base station, increased likelihood

from more robots transmitting observations, and increased

likelihood of a robot arriving at a point (given by (1)) by

choosing a lower cost path. Thus our objective function seeks

to increase the reward at the base station (zbf ) and obtained

by every robot (zrf ) while minimizing the cost accrued (cqq′ ).

We scale a robot’s reward and the path cost by the attrition

rate, a, as the change in likelihood from more transmissions

or lower cost is directly related to the attrition rate.

max
∑

f∈F



zbf + a
∑

r∈R\{b}

zrf



−

a
∑

r∈R

∑

q∈Q

∑

q′∈Q

cqq′αrqq′

(14)

We consider the base station as a stationary robot and add

it to R. We further add constraints dictating that the base

station immediately travels and stays at the ending point.

We plan for additional time for the robots to explore a

frontier. When more robots are sent to a frontier, or more time

is spent exploring, the reward increases up to the maximum

estimated amount, df . The benefit from adding more robots

does not necessarily scale linearly with the number of robots—

e.g., exploring a narrow hallway is not faster with more

robots. Thus, we add a hyperparameter representing a set of

exploration rates, j ∈ J , describing information gain per unit

time. If at least nj robots explore, they achieve rate mj . We

decide rates using binary variable, γfj which is one if and

only if exploration rate j is used to explore frontier f . Ideal

values of mj depend on the environment. We would expect

the exploration rate to increase linearly for open environments

due to simultaneous exploration, but have diminishing returns

in cluttered environments.

We define constraints for the reward from frontier ex-

ploration. Constraint (15) limits the reward for a robot from

frontier f , described by βrf , or unconstrained otherwise. Con-

straints (16)-(18) ensure we choose at most one exploration

rate with the proper number of robots if exploring.

zrf f mj (yrf − xrf )+

df (1− γfj)+

df (1− βrf )

∀r ∈ R, f ∈ F , j ∈ J (15)

njγfj f
∑

r∈R

βrf ∀f ∈ F , j ∈ J (16)

||R||
∑

j∈J

γfj g
∑

r∈R

βrf ∀f ∈ F (17)

∑

j∈J

γfj f 1 ∀f ∈ F (18)
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F. Communication Constraints

The likelihood of the base station receiving an observation

increases when multiple robots attempt to send the same

observation. Each robot has some probability of failure, so

communication from multiple robots increases the likelihood

that any one robot arrives back at the base station with the

information. We model information exchange between robots

and communication with the base station.

We model rendezvous points to communicate by expanding

Q to include more points within Mknown. There is an

optimality-scalability trade-off in adding rendezvous points;

more rendezvous points will better approximate the optimal

solution at the cost of additional decision variables. In our

experiments we expanded Q to include the midpoint on the

path between any two frontiers and the midpoint between

the base station and any frontier. Alternatively, rendezvous

points could be chosen by sampling the space or choosing

specific features, such as intersections, on the map.

We model communication with a binary variable, ηrr′fq,

that is one if and only if robot r communicates information

about frontier f to r′ at point q.

To ensure robots have an observation before they communi-

cate it, we add variable wrf for the time that robot r obtains

observations from f , and add constraint (19) to limit when a

robot obtains new information when exploring a frontier.

yrf f wrf + h (1− βrf ) ∀r ∈ R, f ∈ F (19)

The reward a robot gains from communication, zr′f ,

is limited to what information was transmitted. We add

constraint (20) to limit reward from communication based

upon what the communicating robot knows or unconstrained

(i.e., df ) if not obtaining information by communication.

zr′f f zrf + df



1−
∑

q∈Q

ηrr′fq



 ∀r, r′ ∈ R, f ∈ F

(20)

To bound the maximum reward a robot can receive, we

define (21) to be the maximum amount available at a frontier if

it receives any information and zero otherwise. This constraint

combined with the other two that limit reward ((15) and (20))

ensures that the reward a robot receives reflects the actions

it performs—e.g., exploration, communication, or neither.

Constraint (22) limits the ways a robot can receive information

to either communication or exploration, as a robot that has

explored a frontier already knows the information.

zrf f rf





∑

r′∈R

∑

q∈Q

ηr′rfq + βrf



 ∀r ∈ R, f ∈ F (21)

∑

r′∈R

∑

q∈Q

ηr′rfq + βrf f 1 ∀r ∈ R, f ∈ F (22)

When two robots rendezvous to communicate, we must

ensure that they arrive at the same point, given by ηrr′fq , at

the same time (given by the arrival, xrq and departure, yrq,

time), after one robot has learned the information, wrf . We

model these three conditions with the constraints (23)-(27).

(23) limits the communication to at most one rendezvous

point. (24) and (25) constrain both robots to be at rendezvous

point at the same time. (26) ensures the transmitting robot

has the information before arriving, and (27) enforces the

receiving robot has the information after leaving.

∑

q

ηrr′fq f 1 ∀r, r′ ∈ R, f ∈ F (23)

xr′q f

yrq + h (1− ηrr′fq)
∀r, r′ ∈ R, f ∈ F , q ∈ Q (24)

xrq f

yr′q + h (1− ηrr′fq)
∀r, r′ ∈ R, f ∈ F , q ∈ Q (25)

wr′f g wrf−

h

(

1−
∑

q

ηrr′fq

)

∀r, r′ ∈ R, f ∈ F (26)

wr′f g

yr′q − h (1− ηrr′fq)
∀r, r′ ∈ R, f ∈ F , q ∈ Q (27)

Communication can occur from any robot that knows

information to one that does not; it does not need to be from

the robot that directly explored the frontier. To ensure that

the origin of any information is from exploration, we model

flow of information through the variable vrr′f representing

network flow from r to r′ about f .

Constraint (28) enforces that information about a frontier

is only generated by exploring a frontier, and constraint (29)

ensures information only flows between robots that have com-

municated. These constraints ensure that all communicated

information starts with an exploring robot.

(||R|| − 1)βrf +
∑

r′

vr′rf g

∑

r′

vrr′f +
∑

r′

∑

q

ηr′rfq
∀r ∈ R, f ∈ F (28)

vrr′f f ||R||

(

∑

q

ηr′rfq

)

∀r, r′ ∈ R, f ∈ F (29)

We limit communication at the base station to ensure any

rendezvous point increases the likelihood of the base station

receiving information, rather than just increase (14).

ηrr′fe = 0 ∀r ∈ R, r′ ∈ R \ {b}, f ∈ F (30)

Lastly, we add typical non-negativity and binary constraints.

G. Recursive Exploration

We develop a recursive exploration strategy (Alg. 1) using

the model in Sec. IV. Each subteam plans division into new

subteams, frontier exploration, movement, and rendezvous

(line 2). Subteams execute their plans in parallel (line 10). The

robots record new observations during movement (line 17),

and recursively plan (line 15) with new observations at fron-

tiers, before returning to any previously planned rendezvous.
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(a) A Four Way Intersection (b) A Maze Environment (c) Caged Environment (d) Camp Lejeune

Fig. 4: Maps of the simulated environments used in our experiments. Dark and light gray points represent occluded and free

unknown space respectively. The laptop represents the base station and every robot’s starting location.

Algorithm 1: Recursive subteam exploration.

Input: R,M,F , h // team, map, frontiers, final time

Output: R,M.F // new team, map, and frontiers

1 function Plan(R,M,F , h) is

// L is a start time ordered list of actions for R
2 L ← optimize (R,M,F , h) // Sec. IV

3 return Execute (R,M,F ,L)

4 function Execute(R,M,F ,L) is

5 if L = () then return M

6 (l, R′, h′, q)← first(L)
7 if R∩R′ = ∅ then // Skip others’ actions

8 return Execute (R,M,F ,rest(L))
9 else if R ̸¦ R′ then // Fork subteam

10 fork Execute (R′,M,F ,L)
11 return Execute (R \R′,M,F ,rest(L))
12 else // R′ § R
13 switch l do // Perform action

14 case PLAN do

// Recursively explore the frontier

15 R,M,F ← Plan (R,M,F , h′)
16 case MOVE do // Robots can fail here

17 R,M,F ← Move (R,M, q)
18 case COMMUNICATE do // Merge subteams

19 R,M,F ← Join (R′,M)

20 return Execute (R,M,F ,rest(L))

V. EXPERIMENT

We evaluate the optimality of a single iteration of our

algorithm and simulate exploration in the scenarios in Fig. 4.

Scenarios Fig. 4a, Fig. 4b, and Fig. 4c test basic execution,

scalability to many frontiers, and performance with an

inaccurate estimate of information gain respectively. Fig. 4d

is a map of Camp Lejeune, a military training center in North

Carolina, testing performance in a real world scenario. As a

baseline, we compare against a theoretical upper bound on

optimality (Sec. V-A) and a greedy search.

A. Upper Bound

We compare our results against an upper bound on the

expected utility from a single iteration. We construct the

upper bound by assuming the likelihood a robot can arrive

and return from a frontier is independent of the likelihood

it can arrive and return from any other frontier. With this

assumption, the optimal solution is for every robot to form

one subteam and go from the base station to each frontier

and return with the maximum reward, d′f :

∑

f∈F

(

1−
∏

r∈R

(

1− (1− a)
2cfe

)

)

d′f . (31)

The likelihood the robots obtain the reward from a frontier

is still bounded by the cost to go to the frontier, cfe, and the

attrition rate, a, so we expect the upper bound to be close

to the true optimal answer. For Fig. 4a, our approach was

within 0.0% of the upper bound, meaning the upper bound

was the optimum for this problem.

B. Greedy Search Baseline

We compare against a greedy baseline that assigns robots

to the frontier that maximizes the increase in expected utility

and returns after exploring for the full amount of time.

Past work on robot exploration has not explicitly considered

the possibility of failure [12], [13]. Instead, they assume

robots are independent, whereas attrition couples decisions

since we must consider the probability of any one robot

communicating an observation. Thus, using expected utility

as the objective for such algorithms is not possible.

C. Experiments and Results

We solved the ILP in Gurobi [27] on an Intel Xeon CPU

at 3.40Ghz, and computed costs to go between points using

a Probabilistic Road Map [28], [29]. We found frontiers

using [22] and expanded them by constructing Voronoi cells

around the frontiers. We find the optimization starting point by

iteratively assigning each robot to the highest reward frontier

with the least amount of robots assigned to it, and greedily

assigning communication points between pairs of frontiers

with robots. We post-process to explore for the full available

time until the next scheduled rendezvous. For each recursive

call, planning had a timeout of 10% of the exploration time.

We specify possible communication points as the midpoint

on the path between any two frontiers or from a frontier to

the base station. We used a cost and time to go as distance,

attrition rate of 0.005—i.e., a 0.5% chance of failure per

meter—and maximum reward as the number of unknown

0.1x0.1m cells in the frontier. We assume subteams have

exploration rates of {4, 5.5, 6.5, 7}m
2

s
for {1,2,3,4} robots.
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Upper Bound Greedy Search Our Work Greedy Search Our Work

10 robots Initial Expected Utility Simulated Information Gain ± Std. Dev.

Four Way 980 979 (99.9%) 979 (99.9%) 980 ± 0 980 ± 0

Maze 4785 2165 (45.3%) 2393 (50.0%) 1940± 530 2005 ± 300

Cage 59968 56009 (93.4%) 57192 (95.3%) 8144 ± 7362 7326± 3005
Camp Lejeune 185109 72003 (38.9%) 108008 (58.3%) 10459± 9819 21513 ± 16392

20 robots Initial Expected Utility Simulated Information Gain ± Std. Dev.

Four Way 980 980 (100.0%) 980 (100.0%) 980 ± 0 980 ± 0

Maze 4879 2914 (59.7%) 3635 (74.5%) 2887± 481 3173 ± 617

Cage 59969 59746 (99.6%) 59959 (100.0%) 18351± 8108 19218 ± 8795

Camp Lejeune 191705 115289 (60.1%) 175470 (91.5%) 35456± 13036 45162 ± 16011

TABLE I: Initial Expected Utility and Information Gain during Simulation. We compared our approach to a greedy search

and list the % difference ( ours
bound

) from the theoretical upper bound, and standard deviation of information gain.

Table I shows the initial expected utility for the theoretical

upper bound (31) and the two approaches as well as the infor-

mation gain at the base station averaged over five simulated

trials. Our model has higher expected utility than the greedy

search in more complex environments and produces results

within 50% of the theoretical upper bound. Additionally, our

approach has both greater achieved information gain and less

deviation from simulated exploration.

The deviation in information gain from our method is

significantly lower the greedy search’s, due to the subteams

planning rendezvous points. The likelihood that at least one

robot returns to the base station with some information

increases when robots communicate. Thus, the information

gain is less dependent on an individual robot successfully

returning to the base station, decreasing the deviation in the

simulated information gain and increasing the expected utility.

Greedy search may outperform our method when our

estimate of information gain is very inaccurate (Fig. 4c) and

with small number of robots. However, we do outperform

the greedy search in environments with sufficient accuracy

in estimated information gain (Fig. 4d), implying that our

approach can account for some deviation in the estimated

information gain.

VI. CONCLUSION

We presented an optimization model and recursive approach

to find robot paths that maximize expected utility under

communication and attrition. Our model extends the VRP,

and we solve an ILP to approximate the optimal solution.

Our results show that, for tested scenarios, our approach

outperforms greedy search and finds plans within 50% of a

theoretical upper bound on optimality. In future work, we

will evaluate this approach on physical robots and further

refine choices of rendezvous locations.
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