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Robot Team Data Collection with Anywhere Communication

Matthew A. Schack†, John G. Rogers‡, Qi Han†, and Neil T. Dantam†

Abstract— Using robots to collect data is an effective way to
obtain information from the environment and communicate it to
a static base station. Furthermore, robots have the capability to
communicate with one another, potentially decreasing the time
for data to reach the base station. We present a Mixed Integer
Linear Program that reasons about discrete routing choices,
continuous robot paths, and their effect on the latency of the data
collection task. We analyze our formulation, discuss optimization
challenges inherent to the data collection problem, and propose a
factored formulation that finds optimal answers more efficiently.
Our work is able to find paths that reduce latency by up to
101% compared to treating all robots independently in our
tested scenarios.

I. INTRODUCTION

Robots teams are an effective way to collect and communi-

cate data from the environment—e.g., in disaster response [1]

or environmental monitoring [2]. Combining motion and

communication enables a robot team to collect data from

various sites, transmit data across areas not physically

traversable, and move to circumvent wireless interference

(see Fig. 1). Prior work has addressed robot data collection

for independent robots [3], [4], [5] or communication at

a priori locations [6], [7]. Generalizing such approaches

to communicate at arbitrary locations improves achievable

latency of robot data collection.

We develop a mixed-integer formulation for robot data

collection, analyze its complexity, and produce a more

efficiently solvable factored form. Optimal (minimum latency)

data collection may require cooperation and communication

between team members, and decisions about motion and

communication are coupled because wireless communication

depends on the team members’ positions. Our formulation

integrates network routing decisions with convex optimization

based path planning [8]. A key feature of many data collection

scenarios is the presence of multiple global optima, which

poses challenges for efficient optimization. We address the

optimization challenge of robot data collection with a factored

formulation that improves the tightness of the linear relaxation

and reduces the necessary work to resolve multiple optima.

This paper is organized as follows. Sec. II reviews related

work in robot data collection. Sec. III formally defines the

robot data collection problem. Sec. IV introduces our mixed-

integer formulation. Sec. V analyzes this formulation and

develops the efficient, factored form. Finally, we evaluate our

approach in Sec. VI and show up to 101% improved latency.
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Fig. 1: Lower latency data collection by considering robot-

to-robot communication. The robots start at the base station

(shown as the computer) and must collect the data from the

blue sites. Robot communication is impossible in the red

areas. One robot collects all the data from the sites and then

transmits it across the wall to another robot team member,

resulting in lower latency than robots acting independently.

II. RELATED WORK

We review related works in data collection and similar

problems in periodically and constantly connected networks.

In robot data collection, a robot must obtain data from

static sites and deliver it to a static base station. This problem

is a special class of the traveling salesman problem (TSP)

called TSP with neighborhoods (TSPN) where a mobile robot

must visit the areas around sites [9]. Leading approaches have

scaled to a large number of sites by combining sites whose

regions overlap [3], using heuristics and tangent graphs to

find paths that ensure a robot spends enough time at a site to

obtain all data [4], or assuming sites can transmit data and

only visiting specified sites [5]. These works focus on using a

single robot to collect the data, and extensions to use multiple

robots [4] create independent paths, rather than having robots

communicate with one another. [6] evaluates the effects of

robot-to-robot communication through discretization and finds

a latency-constrained path. Our work finds a minimum latency

path using multiple robots that can communicate with one
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another, expanding the possible solution set.

Previous approaches to create a constantly connected

network between robots and a static base station [10], [11],

[12], [13], [14], [15], [16] can accomplish many tasks,

including data collection. While a constantly connected

network between sites and the base station may sometimes

be optimal, enforcing constant communication as a constraint

limits the valid space the entire team can move, potentially

resulting in incomplete performance where some sites cannot

be visited. In this work, we do not consider communication

as a constraint; instead, we use periodic communication to

decrease latency.

Approaches for periodically connected robot networks have

the team perform a task with periodic connectivity guaran-

tees [17], [18] or introduce rendezvous points where robots

may communicate [7], [19]. Using a priori rendezvous points

can reduce latency compared to assuming robot independence,

but their effectiveness depends on the rendezvous points

chosen. We generalize such approaches by permitting robots

to communicate not only at a priori rendezvous points, but

anywhere within their communication range.

III. PROBLEM DEFINITION

We address robot team data collection. Robots must obtain

data from multiple sites in the environment, e.g., by using

sensors on the robot or downloading from a statically placed

sensor at that site. Then, the robots must transfer all collected

data to a static base station through a combination of motion

and wireless communication, considering both obstacles for

motion and wireless interference. We seek a sequence of

sites to visit, transmissions between team members, and

accompanying paths to route all data to the base station

with minimum latency.

Definition 1: A robot data collection problem is the tuple

Σ = (X ,R,S,O,Ψ, b, c, u, q).

• X ¢ SE (2) is the environment.

• R is a finite set of homogeneous robots.

• S is a set of sites containing data. Each site s ∈ S
has associated (1) a convex region (Xs ¦ X ) which the

robot occupies to collect data, (2) an amount of data

(d
ï0ð
s ∈ R+), and (3) a data collection rate (ps ∈ R+).

• O ¦ X is a set of obstacles.

• Ψ is a set of interfering transmitters. Each interfering

transmitter ψ ∈ Ψ has an interference range cψ .

• b is the static base station with location xb ∈ X .

• c ∈ R+ is the communication range of the robots.

• u ∈ R+ is the robot velocity.

• q ∈ R+ is the wireless data transfer rate.

Space X consists of disjoint valid Xvalid and invalid and

Xinvalid spaces. Invalid space Xinvalid is obstacle region O, and

valid space Xvalid consists of all other points in X .

Similar to other data collection works, we assume that

wireless communication within c happens with certainty [3],

[4], [5] and that the environments have enough clearance that

a robot cannot block a path—i.e., robot-to-robot collision

avoidance will not affect the optimality of a robot’s path [4]. In

addition, we assume communication is blocked with certainty

if either the sender or receiver is inside interference. Finally,

we account for the limited bandwidth by restricting a robot

to only be able to send and receive from a single source at

any time, which is equivalent to sharing equal bandwidth.

We seek a tour for each robot which routes all data to

the base station—i.e., the sequence of sites s ∈ S to visit

and team members r ∈ R ∪ {b} to exchange data with—as

well as the continuous path to accomplish the tour. We call

each discrete step of each robot’s tour a tour leg and seek

to minimize the largest ending time of any robot’s last tour

leg—i.e., the robot’s latency, l′r ∈ R+.

min max
r∈R

l′r (1)

Def. 1 is a generalization of the traveling salesman problem

with Neighborhoods (TSPN), which is NP-hard [9]. That is,

we may reduce TSPN to an instance of Def. 1 with only a

single robot. Thus, Def. 1 must also be NP-hard.

Instances of Def. 1 typically have multiple globally optimal

solutions to (1), which increases the challenge of efficiently

finding solutions. Two issues cause multiple global optima.

First, optima are not unique under reassignment of robots,

so given optimal trajectories, we may change which robot

follows which path without changing total latency. Second,

optimality is determined only by the maximum latency robot

in (1), so other robots may take other actions as long as

they are completed before the slowest robot. Widely used

branch-and-bound optimization techniques are less efficient

in the presence of multiple global optima. In particular,

such approaches prune sub-optimal variable assignments, but

additional global optima cannot be pruned and are instead

evaluated to completion.

IV. MIXED INTEGER LINEAR PROGRAM FORMULATION

We first formulate a Mixed Integer Linear Program (MILP)

for robot data collection. Solving this MILP determines each

robot’s tour (i.e., a robot’s data collections, receptions, and

transmissions) as well as paths to accomplish the tour. Next,

in Sec. V, we will analyze this MILP and extend it to a more

efficiently solvable factored formulation.

We divide our program into three parts: robot tour con-

straints (Sec. IV-A); path planning constraints (Sec. IV-B);

and timing constraints that determine the latency for a robot

based on its path and data transfer times (Sec. IV-C).

Our MILP finds a tour that will route all data to the base

station. Each leg of the tour—i.e., a single data collection,

reception, or transmission—has an associated robot path to

move into communication range or visit a specific site’s

region. We consider each tour leg as a discrete timestep,

and constrain the robots performing the leg to end their

path either within communication range or within a site’s

region. We note that program timesteps are different from

actual time and impose only an ordering of actions for

associated robots. A timestep means the leg must complete

before associated robots can perform another leg with

greater timestep. This formulation enables concurrent motion,

communication, and collection, despite a solution with actions
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at different timesteps. Sec. IV-C describes the rules for timing

and concurrency.

An optimal solution will minimize the maximum robot

latency (1); however, a MILP cannot directly minimize a

maximum. Instead, we define new variable, lteam, representing

the team’s latency, and constrain lteam to be greater or equal

to every robot’s latency.

min lteam (2)

l′
ïhð
r f lteam ∀r ∈ R ,

where l′
ïhð
r is the latency of robot r at the final timestep h.

A. Tour Constraints

Tour constraints determine the sequence of data collections,

receptions, and transmissions. We model the tour as a max-

flow problem [20]. Later, in Sec. IV-B, we will address the

paths required to accomplish the tour.

We create a graph representing data flow between sites,

robots, and the base station. Graph vertices consist of all

robots, sites, and the base station V = S ∪ R ∪ {b}. Graph

edges exist between every site and robot, every robot pair,

and every robot and the base station Ve = {(s, r) ∀s ∈ S, r ∈
R} ∪ {(r, r′) ∀r, r′ ∈ R} ∪ {(r, b) ∀r ∈ R}, admitting any

possible tour. At each step i, each vertex v ∈ V has data d
ïið
v ,

which changes with the flow f
ïið
vv′ along edges. When we sum

over pairs of vertices if the pair is not an edge in Ve—e.g.,

f
ïið
sb ∀s ∈ S—we define the variable’s value as zero.

dï0ðv = 0 ∀v ∈ V \ S, d
ïhð
b =

∑

s∈S

dï0ðs (3)

dïi+1ð
v = dïiðv +

∑

v′∈V

(

f
ïið
v′v − f

ïið
vv′

)

∀v ∈ V, i < h (4)

∑

v′∈V

f
ïið
vv′ f d

ïið
v ∀v ∈ V, i f h (5)

We add a binary variable indicating the specific tour leg

happening at timestep i, allowing us to conditionally enforce

motion (described in Sec. IV-B) if the tour leg is a part of

the overall tour. Tour leg t
ïið
vv′ is true if and only if vertices v

and v′ transfer data at timestep i. We disallow simultaneous

data transfers, since we only traverse one leg per timestep,

and force t
ïið
vv′ to be true if f

ïið
vv′ is positive.

∑

v,v′∈Ve

t
ïið
vv′ f 1 ∀i f h (6)

t
ïið
vv′

∑

s∈S

dï0ðs g f
ïið
vv′ ∀ (v, v′) ∈ Ve, i f h (7)

We allow for parallel motion and data transmissions even

though (6) limits the team to one tour leg per timestep since a

later timestep does not necessarily mean the leg happens later

in continuous time. We discuss the coupling between discrete

timesteps and the latency for every robot in Sec. IV-C.

We add to the classic max-flow problem constraints to

define the durations of data transfers, which will be used

in Sec. IV-C to determine latency. We represent a data

transfer’s duration as γ
ïið
r . Data transfer durations depend on

the amount of data (f
ïið
vv′), the data transfer rate (q), or the

data collection rate (ps).

γïiðr g
f
ïið
rr′

q
, γ

ïið
r′ g

f
ïið
rr′

q
∀r ∈ R, r′ ∈ R ∪ {b}, i f h (8)

γïiðr g
f
ïið
sr

ps
∀r ∈ R, s ∈ S, i f h (9)

B. Path Planning Constraints

We create constraints describing a robot’s path at each

timestep and conditionally constrain timestep ending position

if involved with a tour leg at that timestep. This conditional

constraint ensures each tour leg has the appropriate motion

to accomplish it. A robot on a tour leg must end its path

within either a site’s region or within communication range

(Sec. IV-B.1), and we additionally ensure that communication

occurs outside of interference in Sec. IV-B.2.

Optimization-based path planning is an established tech-

nique, and we adapt the approach of [8], which describes a

tight MILP formulation. However, our requirements differ

from this prior work in that the goal for a robot’s path at

timestep i is not known a priori but instead, depends on

the decision variables for the tour leg tïið. Additionally, we

sequence multiple path planning problems where the starting

location at timestep i is the ending location at i−1. We briefly

review the MILP formulation of [8] (equations (10) to (12))

and refer the reader to [8] for a more in-depth discussion

of the formulation. Then, we describe our extensions for

interaction between a robot’s tour and the corresponding

path.

The formulation in [8] requires the environment to be

decomposed into convex regions. Any environment’s valid

space—even non-convex environments—is decomposable into

convex shapes with space decomposition methods such as

Delaunay Triangulations [21] or Voronoi Diagrams [22].

Let the convex region decomposition be Ω where
⋃

ω∈Ω ω = Xvalid, the prospective cone of each region be Ω̄,

the edge set between convex regions be Eω = Einω ∪E
out

ω ∀ω ∈
Ω, binary variables describing what edges are traversed be

y
ïið
re , and the auxiliary variables describing the location of the

robot be z
ïið
re and z

′ïið
re . The robot may only move through

valid space according to flow and inclusion constraints.

∑

e∈Ein

ω

(

z
′ïið
re , y

ïið
re

)

=
∑

e∈Eout

ω

(

z
ïið
re , y

ïið
re

)

∀ω ∈ Ω, r ∈ R, i f h (10)
∑

e∈Eout

start

yïiðre =
∑

e∈Ein

end

yïiðre = 1 ∀r ∈ R, i f h (11)

(

z
ïið
re , y

ïið
re

)

∈ Ω̄u,
(

z
′ïið
re , y

ïið
re

)

∈ Ω̄v

∀e = (u, v) ∈ E , r ∈ R (12)

We sequence paths from timestep to timestep, so the start

location of the robot’s ith path is the ending location of its

path at i− 1. We also enforce that the zero-th path starts at
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the base station.

z
ï0ð
re = xby

ï0ð
re ∀r ∈ R, e ∈ Eout

start
(13)

z
ïið
r,(start,ω) = z

′ïi−1ð
r,(ω,end) ∀r ∈ R, ω ∈ Ω, 1 f i f h (14)

Next, we describe our extensions to [8] coupling ending

positions at each timestep and the tour obtained in Sec. IV-A.

1) Leg Completion Constraints: We conditionally constrain

a robot’s ending position if it is involved in a tour leg.

We do not initially know the tours when creating the

MILP, which means we do not know where robots will start

or end paths at each timestep. Therefore, we must have

edges Ein
end

and Eout
start

to every convex region of space in

Ω, allowing the robot to start or end its path anywhere.

Rather, we add additional constraints limiting a robot’s final

position by introducing a big-M [23]. We use the big-M to

increase the size of all destinations—i.e., site regions or within

communication range—where a tour leg is not occurring to

the size of the entire space, leaving just the destination where

the tour leg is occurring at the proper size.

A robot must be within a site’s region Xs, s ∈ S to receive

data from that site—i.e, t
ïið
sr = 1. We enforce this conditional

requirement by representing Xs in Ax f b form—i.e., Asx f
bs∀x ∈ Xs ' Asx r bs∀x /∈ Xs, and adding the big-M to

conditionally enable the constraint. We note that due to (11)

there exists only one edge in Eout
end

for any robot and timestep

pair that is non-zero, so
∑

e∈Eout

end

z
′ïið
re is the robot’s position

at the end of the path.

As
∑

e∈Eout

end

z
′ïið
re f bs +M

(

1− tïiðsr

)

∀s ∈ S, r ∈ R, i f h (15)

The transmitter and receiver must be within the communi-

cation range c for robot-to-robot or robot-to-base communi-

cation. We represent c to arbitrary precision using the same

linear decomposition as [24], which inscribes an N sided

equilateral polygon into a circle of radius c.





∑

e∈Eout

end

z
′ïið
re − xb





[

sin
(

2πn
N

)

cos
(

2πn
N

)

]¦

f c+M
(

1− t
ïið
rb

)

∀r ∈ R, n ∈ [1, 2, . . . , N ] (16)




∑

e∈Eout

end

z
′ïið
re −

∑

e∈Eout

end

z
′ïið
r′e





[

sin
(

2πn
N

)

cos
(

2πn
N

)

]¦

f c+M
(

1− t
ïið
rr′

)

∀n ∈ [1, 2, . . . , N ] , r, r′ ∈ R, r ̸= r′, i f h (17)

Similar to before, the additional M
(

1− t
ïið
rr′

)

expands the

communication range if no data is transmitted between r and

r′ at timestep i, removing the constraint.

2) Interference Constraints: Environmental interference

prevents wireless transmission, so the final positions for robot-

to-robot and robot-to-base communication must be outside of

interference. A robot is outside the range of each interfering

transmitter ψ if there exists at least one n that satisfies:


xj −
∑

e∈Eout

end

z
′ïið
re





[

sin
(

2πn
N

)

cos
(

2πn
N

)

]

g cψ,

∀r ∈ R, i f h ∃n ∈ [1, 2, . . . , N ] . (18)

Unfortunately, we cannot directly evaluate a ∃ operator

in MILP formulations, so we add a binary variable α
ïið
ψrn

allowing us to turn off at most N − 1 instances of (18) if

robot r is involved in a transmission at timestep i.


xj −
∑

e∈Eout

end

z
′ïið
re





[

sin
(

2πn
N

)

cos
(

2πn
N

)

]

g cψ −Mα
ïið
ψrn,



xj −
∑

e∈Eout

end

z
′ïið
r′e





[

sin
(

2πn
N

)

cos
(

2πn
N

)

]

g cψ −Mα
ïið
ψr′n,

∀n ∈ [1, 2, . . . , N ] , ψ ∈ Ψ, r, r′ ∈ R, r ̸= r′i f h, (19)
∑

n∈[1,2,...,N ]

α
ïið
ψrn g t

ïið
rr′ ,

∑

n∈[1,2,...,N ]

α
ïið
ψ,r′n g t

ïið
rr′ ,

∀n ∈ [1, . . . , N ] , ψ ∈ Ψ, r, r′ ∈ V, i f h (20)

When t
ïið
rr′ = 0, all α

ïið
ψrn can be one, removing (19) from the

MILP. When t
ïið
rr′ = 1, there must be at least one α

ïið
ψrn = 0

satisfying (18), meaning the robot is out of interference.

Finally, robot motion takes time, which affects the latency.

We define the time for robot r to move from the start region

to the goal region during timestep i as δ
ïið
r and constrain it

by the distance and velocity u.

δïiðr =
∑

e∈E

|z′
ïið
re − z

ïið
re |

u
∀r ∈ R, e ∈ E , i f h (21)

C. Timing Constraints

Timing constraints ensure that the required time is allotted

for robot motion and data transfer. These time requirements

determine each robot’s latency.

Robot r’s start and end times (l
ïið
r and l′

ïið
r ) at step i are

defined by motion time, δ
ïið
r , and data transfer time, γ

ïið
r .

l′
ïi+1ð
r g lïiðr + γïiðr ∀r ∈ R ∪ {b}, i < h (22)

lïiðr g l
′ïi−1ð
r + δïiðr ∀r ∈ R, 1 f i f h (23)

lï0ðr g δï0ðr ∀r ∈ R (24)

lïiðr g l
ïið
r′ −M(1− t

ïið
rr′), l

ïið
r′ g l

ïið
r −M(1− t

ïið
rr′),

∀r ∈ R, r′ ∈ R ∪ {b}, r ̸= r′, i f h (25)

Constraint (22) ensures that the robots spend the full

time collecting or transmitting data, (23) and (24) ensure

that robots finish their path before they start transmitting or

collecting data, and (25) ensures that both the transmitter and

receiver have arrived before any data transfer happens.

Constraints (22)-(25) allow for simultaneous data collection

or transfers by only constraining one robot’s start time to ac-

count for another robot’s start time if they are communicating

with one another. As a result, increasing timesteps may not
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be associated with later continuous time as robots work in

parallel and only wait for each other when they communicate.

We construct robot r’s tour by finding the sequence of

timesteps where r collects data or communicates—i.e., r ∈

(v, v′) ' t
ïið
vv′ = 1. We construct r’s path by finding the

sequence of edges traversed during a step (i.e., y
ïið
re = 1) and

positions from z
ïið
re and z

′ïið
re .

We have presented a MILP for tours and paths that transfers

all data to the base station (Sec. IV-A). Each tour leg

constrains the positions of associated robots (Sec. IV-B).

Using the motion and data transfer times, we compute the

latency for each robot and the team as a whole Sec. IV-C.

V. ANALYSIS

We analyze our formulation from Sec. IV and discuss

challenges for efficient optimization. Furthermore, we show

that cyclic network routes are sometimes optimal, meaning

we cannot remove additional global optima by preventing

network cycles. We address these challenges with a factored

optimization approach that improves efficiency.

A. Optimization Challenges

The formulation in Sec. IV is challenging to solve for two

reasons: (1) multiple global optima and (2) a loose linear

relaxation. These issues increase the time for branch-and-

bound optimization due to increased variable assignments

that must be evaluated before pruning a branch.

Three situations cause multiple global optima: (1) robots

moving to different regions of space when they are not part

of a tour leg; (2) the team following the same paths, but

switching which robot follows which path; and (3) a team

following the same tour, but switching the discrete timesteps

where they perform tour legs. We remove the first cause with,

y
ïið
r(ω,ω′) f

∑

v∈V

tïiðrv +
∑

v∈V

tïiðvr ∀r ∈ R, ω, ω′ ∈ Ω , (26)

which allows r to move to a different region only if part of

a leg. Unfortunately, the latter two causes of multiple optima

are more difficult to completely prune due to the different,

but still potentially uniquely optimal, permutations of t.
Path planning using [8] produces a tight formulation, but

the tour constraints (Sec. IV-A) have a comparatively loose

linear relaxation. The looseness is primarily due to indicator

constraint (7) which accomplishes data transfer in the linear

relaxation with low, but non-zero, t. Removing this looseness

and the multiple global optima would yield a tight formulation

and a single optimum, which would be easier to solve.

B. Cyclic Network Routes

A common way to reduce multiple optima is to remove

cyclic network routes—e.g., r1 transmits to r2 and then later

on r2 transmits to r1—which are always suboptimal for a

single robot or pair of robots. However, we show that with

three or more robots, cyclic routes could have the minimum

latency, meaning we cannot disallow tours with a cyclic route.

Optimal cyclic routes depend on robots being able to

transmit data when they would otherwise be idle, which may

reduce latency when data transfer times are non-negligible.

We give an example of such a data transfer in Fig. 2a to

prove that cyclic routes may be optimal.

Theorem 1: The minimum latency tour may include a

transmission from robot r to r′ and later a transmission

from r′ to r. That is, t
ïið
rr′ ≠⇒ ¬t

ïjð
r′r ∀j > i

Proof: The optimal tour for environment Fig. 2a

with three robots contains a cycle. Environment Fig. 2a

has two sites, st and sr. Robots rt, rm, and rb follow

the top, middle, and bottom paths from the base station

respectively. The optimal tour and path to collect data

from just st is t
ï0ð
strt , t

ï1ð
rtrm , t

ï2ð
rmb

, with rt and rm traversing

their respective paths then transmitting the data over walls.

Similarly, the optimal tour and path for data collection

from sr is t
ï0ð
srrm , t

ï1ð
rmrt , t

ï2ð
rtrb , t

ï3ð
rbb

with robots following each

path and then transmitting the data over the walls. By

environment design, rt and rm can route all the data in

st to the base station and still arrive at their positions

to transmit the sr’s data before rb arrives. Furthermore,

if rt collects data and then attempts to follow any other

path, rt will arrive last, increasing the latency. Therefore

the optimal tour is to route each site’s data in sequence:

t
ï0ð
strt , t

ï1ð
rtrm , t

ï2ð
rmb

, t
ï3ð
srrm , t

ï4ð
rmrt , t

ï5ð
rtrb , t

ï6ð
rbb

. This route involves

a cycle (t
ï1ð
rtrm , t

ï4ð
rmrt ) proving t

ïið
rr′ ≠⇒ ¬t

ïjð
r′r ∀j > i.

The potential for optima with cyclic network routes means

we cannot include constraints to remove additional optima due

to cycles. However, cyclic routes may only be optimal when

data transfer times are non-zero. Otherwise, there must always

exist another global optimum avoiding a cyclic network route

by removing the cycle’s first data transfer. Thus, when data

transfer times are negligible compared to robot motion time,

we may disallow cyclic network routes and retain optimality.

Algorithm 1: Our factored optimization algorithm.

Input: Σ // Def. 1

Output: T ,σ // Robot tours and paths

1 σ, T ← NULL

2 lteam ← MAX INT // latency

3 bnd← 0 // Lower bound

4 dist← createDistanceBounds (Σ)
5 v ← TourSelector (Σ)
6 while v.hasTour () do

7 T ′ ← v.getNextTour ()
8 bnd← lowerBound (Σ, T ′,dist) // Alg. 2

9 if bnd > lteam then break // Optimum found

10 σ′, l′
team
← optimize (Σ, T ′)

11 if l′
team

< lteam then σ, T , lteam ← σ′, T ′, l′
team

12 return T , σ

C. Factored Optimization

We improve optimization efficiency by factoring tour

generation—i.e., finding each t
ïið
vv′—from the MILP

in Sec. IV. Factoring avoids the expensive branching to

evaluate additional optima by instead checking for equivalent

tours before path planning. Additionally, the linear relaxation

given a tour is tighter than the relaxation without, implying

that branch-and-bound methods will be more efficient.
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Algorithm 2: Our lower bound latency heuristic

Input: Σ, T ,dist // Def. 1, tour, min site distances

Output: l′
team

// Lower bound on latency

1 l′r, dr ← 0, 0 ∀r ∈ R // Robot latency and data

2 xr ← b ∀r ∈ R // Current robot positions

3 foreach t
ïið
vv′ ∈ T do // Iterate in order

4 if v, v′ ∈ R then // robot-to-robot communication

5 l′v, l
′
v′ ← max (l′v, l

′
v′) +

dv
q

6 dv′ , dv ← dv′ + dv, 0
7 else if v′ ∈ R then // Robot visits site

8 l′v′ ← l′v′ +
dist(x

v′ ,v)
u

+ dv
q

9 dv′ , xv ← dv′ + d
ï0ð
v , v

10 else // Robot delivers data to the base station

11 l′v ← l′v +
dist(xv,v

′)
u

+ dv
q

12 dv, xv ← 0, v′

13 return max (l′r ∀r ∈ R) // Maximum latency

Our factored approach finds the global optimum by

determining a lower bound on latency and terminating when

no tours exist with a lower bound less than the optimum. We

iterate through tours ordered by lower bound until we find a

tour with a lower bound exceeding the optimum (Alg. 1).

We find a lower bound on latency by simulating a tour

using per-leg lower bounds (Alg. 2). The robot with the

greatest latency bound determines the team’s bound. Initially,

we pre-compute minimum latency paths dist between all

pairs of sites and the base station, considering starting and

ending anywhere in each region. When a robot visits a site

(line 7) or the base station (line 10), the robot’s latency is

increased based on the minimum path and data transmitted.

When robots communicate with other robots, (line 4), each

robot’s latency is set to the pair’s maximum plus the data

transmission time. We return the greatest latency for any

robot, which is a lower bound on the team’s latency.

VI. EXPERIMENTS

We evaluate our MILP and factored approach to finding

minimum latency routes and trajectories for robot team

data collection. We compare against a state-of-the-art TSP

solver LKH [25], which assumes robot independence, and

we analyze the performance in a variety of environments.

Each environment captures a specific feature: Fig. 2a has

an optimum with a cyclic network route, Fig. 2b has many

walls and long paths, Fig. 2c has non-convex obstacles, and

Fig. 2d is based an actual outdoor environment.

We use LKH [25] configured to solve the Vehicle Routing

Problem, which attempts to minimize the sum of every robot’s

path cost. LKH does not account for regions, so we used

the center-to-center path length between every static area

(sites and the base station) for the path cost. However, we

also compare against using LKH to find a robot tour and

optimizing that tour using our MILP (called “LKH+Opt”) to

show latency reduction from considering regions.

Method Routes Maze Non-Convex Outdoor
(Fig. 2a) (Fig. 2b) (Fig. 2c) (Fig. 2d)

LKH 1490 3782 842 5762
LKH+Opt 1174 3135 760 4013

MILP 882 3137 761 4015
Factored 791 2062 628 2861

Optimal 791 2062 [294, 614] [2060, 2842]

TABLE I: Latency for the team in seconds (lower is better).

Our factored approach quickly reasons about the effects of

robot-to-robot communication, resulting the least latency of

any method. The true optima are shown for comparison, and

the ones with intervals are the bounds on the optimum after

running the factored approach for 12 hours.

Method Routes Maze Non-Convex Outdoor
(Fig. 2a) (Fig. 2b) (Fig. 2c) (Fig. 2d)

MILP 77.9% 100% 100% 100%
Factored 0% 18.4% 53.6% 28.1%

TABLE II: The final optimality gap ( solution−bound

solution
) (lower

number is better). Our factored method has a tighter bound

on optimality than the MILP. Neither baseline calculates a

bound, meaning they do not have an optimality gap.

We use A* to generate possible tours. States in the search

are locations of data at robots, sites, and the base station.

The goal is all data at the base station. We use the admissible

heuristic from Alg. 2, which is a lower bound on latency. A*

generates tours ordered by the lower bound on latency, so we

have found the optimum once the next tour’s lower bound

exceeds the current best result. Additionally, we calculate the

optimality gap ( solution−bound

solution
) to evaluate the tightness of

our lower bound—i.e., the quality of Alg. 2 as a heuristic

compared to the linear relaxation of Sec. IV.

We performed all experiments on an Intel Xeon processor

at 3.70GHz and use a ten-minute timeout. All environments

used a three-robot team. The site regions and base station for

each environment are shown in Fig. 2. We used Gurobi [26]

for optimization. We decomposed space into greedily created

rectangles in Fig. 2a and Fig. 2b and used Triangle [27] to

perform spacial decomposition in all other environments.

We use unit velocities and data transfer times for each

environment. Additionally, we seeded our MILP with the

answer provided by LKH as an initially valid solution, and

we used a time horizon of (||R||+ 1) (||S||), which is the

maximum number of time steps required for any possible

tour. We measure latency improvement as ours−baseline

ours
.

Table I shows the latency for each method. Our factored

method has up to a 101% improvement compared to methods

assuming robot independence, showing the importance of

robot-to-robot communication. Environments with many walls

(Fig. 2a, Fig. 2b, and Fig. 2d) saw a larger improvement in

latency from robot-to-robot communication than more open

environments (Fig. 2c); transmitting data over walls saves time

robots would spend moving around walls, so the difference in

improvement is expected. Additionally, the large difference in

LKH+Opt and LKH in Fig. 2d is due to LKH+Opt optimizing

to reach any point in the goal area, rather than the center.

Table II shows the optimality gap of the factored approach

and MILP, which indicates the bound tightness. The factored
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(a) Cyclic network routes
(2 sites, 2m range)

(b) Maze
(4 sites, 1m range)

(c) Non-convex Obstacles
(6 sites, 1m range)

(d) Outdoor
(6 sites, 4m range)

Fig. 2: The different testing environments with the number of sites and robot communication ranges. The base station shares

the robot’s communication range and is shown as the computer, the site regions are shown as blue convex areas, the spatial

decomposition is shown by the purple lines, and areas with environmental interference are shown as red circles.

approach used the heuristic lower bound described in Sec. V-

C, while the MILP used the lower bound from branch-and-

bound. We improved the optimality gap by factoring tour

generation from the MILP, suggesting that separating data

collection problems into two sub-problems (tour generation

and path optimization) improves efficiency.

VII. CONCLUSION

We developed a Mixed Integer Linear Program (MILP) to

minimize latency for robot data collection, analyzed the MILP,

and created a more efficient factored form. Our approach

enables disconnected robots to rendezvous anywhere in the

environment, which reduces latency compared to approaches

based on the Traveling Salesman Problem (TSP). Our analysis

of the MILP yielded the factored approach, addressing the

MILP’s two main efficiency challenges: multiple global

optima and a loose linear relaxation. We compared our

approach against a state-of-the-art TSP solver and showed

up to 101% improved latency in our simulated experiments.

Our future work will focus on tour generation, which is the

current bottleneck for our factored approach.
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