Robot Planning and Manipulation

Dr. Neil T. Dantam

CSCI-534, Colorado School of Mines

Spring 2020

Shakey the Robot

"Intelligence"

- Sense, Plan, Act
- Stanford Research Institute Planning System (STRIPS)
 - ► Discrete Actions (e.g., push)
 - Preconditions
 - Effects
- Motion Planning

What is Planning?

Outline

What is Planning?

Course Logistics

Aath Review Propositional Logic Discrete Structures Sets Functions Structures Symbolic Expressions Differential Calculus

Thinking Machines

"The question of whether a computer can think is no more interesting than the question of whether a submarine can swim." -Edsger W. Dijkstra

MINES

The Planning Problem

- Given: 1. System model (state space, transition function, etc.)
 - 2. Start state
 - 3. Goal state / set
- Find: Path (of states or actions) from start to goal

What is Planning?

State Space

Definition (State Space)

The set of values which the system can take.

A state space may be discrete or continuous and finite or infinite.

Example: Grid State Space

Example: Blocksworld State Space

Α

R

What is Planning?

Example: Robot Arm Configuration Space

What is Planning?

Example: Obstacles and Free Configuration Space

Transition Function

Continuous:
$$\frac{dx}{dt} = f(\underbrace{x}_{state}, \underbrace{u}_{input})$$

Example: Grid Transition Function

Graph Representation

What is Planning?

Example: Blocksworld Transition Function

What is Planning?

Example: Robot Arm Transition Function

Assumption: Can connect "neighboring" configurations

Example: Grid Plan

What is Planning?

Example: Blocksworld Plan

What is Planning?

Example: Motion Plan

Simulation vs. Planning

Simulation $x^{[k+1]} = f(x^{[k]})$

Given: Predecessor/Initial state $(x^{[k]})$ Find: Successor/Final state $(x^{[k+1]})$

Planning

$$x^{[k+1]} = f(x^{[k]}, u^{[k]})$$

Given: 1. Predecessor/Initial state $(x^{[k]})$ 2. Successor/Goal state $(x^{[k+1]})$ Find: Action / Path to reach goal $(u^{[k]})$

Different problems; simulation as "subroutine" for planning

Dantam (Mines CSCI-534)

Is planning just "fancy" search?

- Given: 1. System model (state space, transition function, etc.)
 - 2. Start state
 - 3. Goal state / set

Find: Path (of states or actions) from start to goal

- Solution: Search the state space,
 - Beginning from the start state,
 - Ending at goal state/set

Many kinds of state spaces. Many kinds of "search." Scalability!

Course Logistics

Outline

What is Planning?

Course Logistics

Math Review Propositional Logic Discrete Structures Sets Functions Structures Symbolic Expressions Differential Calculus

Course Logistics

Expectations

- ▶ This course is an upper/graduate level computer science course
 - You already know how to program
 - You can learn new programming languages and frameworks
- ► This course is *Robot Planning and Manipulation*
 - ▶ This is **NOT** a programming course (but we will program)
 - This course IS about the math and algorithms for autonomous robots
- Robotics is interdisciplinary
 - Discrete math and algorithms
 - Continuous equations and (differential) calculus

Course Logistics

Syllabus

Math Review

Outline

What is Planning?

Course Logistics

Math Review Propositional Logic Discrete Structures

Sets Functions Structures Symbolic Expressions

Differential Calculus

Boolean Variables

(propositions, bits)

true: $1, T, \top$ false: $0, F, \bot$

Boolean Operators

Basic

Boolean Operators

Extended

Xor:
$$\oplus$$
Implies: \Longrightarrow Biconditional (iff): \Leftrightarrow $(a \oplus b) \triangleq (a \vee b) \land \neg (a \land b)$
 $\triangleq (a \land \neg b) \lor (\neg a \land b)$ $(a \Longrightarrow b) \triangleq (\neg a \lor b)$
 $\triangleq (\neg a \lor b)$ $(a \Leftrightarrow b) \triangleq (a \Longrightarrow b) \land (b \Longrightarrow a)$
 $\triangleq \neg (a \oplus b)$
 $\triangleq (a \land b) \lor (\neg a \land \neg b)$ $\triangleright 0 \oplus 0 = 0$
 $\triangleright 0 \oplus 1 = 1$
 $\triangleright 1 \oplus 0 = 1$
 $\triangleright 1 \oplus 1 = 0$ $\triangleright (0 \Longrightarrow 0) = 1$
 $\triangleright (1 \Longrightarrow 0) = 0$
 $\triangleright (1 \Longrightarrow 1) = 1$ $\flat (c \Rightarrow b) \triangleq (a \Longrightarrow b) \land (b \Longrightarrow a)$
 $\triangleq (a \land b) \lor (\neg a \land \neg b)$ $\triangleright 0 \oplus 0 = 0$
 $\vdash (0 \Rightarrow 0) = 1$
 $\triangleright (0 \Rightarrow 0) = 1$
 $\triangleright (0 \Leftrightarrow 0) = 1$
 $\triangleright (1 \Rightarrow 0) = 0$
 $\triangleright (1 \Rightarrow 1) = 1$ $\flat (c \Rightarrow b) \triangleq (a \Rightarrow b) \land (b \Rightarrow a)$
 $\triangleq (a \land b) \lor (\neg a \land \neg b)$

Truth Table

а	b	(<i>¬a</i>)	$(a \wedge b)$	$(a \lor b)$	$(a \oplus b)$	$(a \implies b)$	$(a \iff b)$
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Sets

Definition (Set)

An unordered collection of object's without repetition

Notation

- $\blacktriangleright S = \{s_0, s_1, s_2, \dots, s_n\}$
- ► Empty Set: Ø
- set membership:

Example ▶ $S = \{1, 2, 3\}$ ► Common Sets: \mathbb{Z} Integers: Real Numbers: \mathbb{R} \mathbb{R}^{n} Real Vector: TB Booleans: ▶ $2 \in \mathbb{Z}$ $\blacktriangleright \pi \notin \mathbb{Z}$

Set Builder Notation

Notation • "The set x, such that P(x)": $S = \{ x \mid P(x) \}$ elements property • "The set x, such that P(x)": $S = \{ x \in A \mid P(x) \}$ property

Example

• Even integers: $s = \left\{ x \in \mathbb{Z} \mid \frac{x}{2} \in \mathbb{Z} \right\}$

Set Relations

Set Operations

Cartesian Product

Definition (Cartesian Product)

The Cartesian product, $A \times B$, is the set of all pairs of elements from A and B:

 $A \times B = \{(x, y) \mid (x \in A) \land (y \in B)\}$

Example

$$A = \{a_0, a_1\}$$

$$B = \{b_0, b_1, b_2\}$$

$$A \times B = \{(a_0, b_0), (a_0, b_1), (a_0, b_2), (a_1, b_0), (a_1, b_1), (a_1, b_2)\}$$

Function Notation

Definition

function object creating an input-output
 relationship (mapping)
 domain the function's input
 range the function's ouput
 notation function : domain → range

Example

Let B be the set of booleans: {0,1}
¬: B → B
∧: B × B → B
Let R be the set of real numbers
+: R × R → R
exp: R → R

Sequences

Graphs

Definition (Graph)

- G=(V,E)
 - ► V: finite set of vertices
 - ► *E*: finite set of edges
 - Each edge being a set of two vertices
 - $\blacktriangleright \ E \subseteq \{\{x,y\} \mid (x \in) V \land (y \in V)\}$

MINES

35 / 46

Dantam (Mines CSCI-534)

Directed Graphs

Definition (Directed Graph)

- G=(V,E)
 - ► V: finite set of vertices
 - ► *E*: finite set of edges
 - Each edge being a **pair** (sequence) of two vertices
 - $\blacktriangleright E \subseteq \{ (x, y) \mid (x \in) V \land (y \in V) \}$

Example (Symbolic)	
$\blacktriangleright V = \{a, b, c, d\}$	
$\blacktriangleright E = \{ (a, b), \\$	
(b, d),	
(d, c),	
(c, a)	

36 / 46

Trees

Example (Symbolic)				
► $V = \{+, 1, *, 2, 3\}$				
► $E = \{ (+, 1), \}$				
(+, *),				
(*, 2),				
(*, 3) }				

MINES

Trees and Expressions

Why and How?

Representation

- ► How to represent a node in the tree?
 - Data element
 - Children
- How to represent node's children?
 Abstract: Sequence
 Concrete: Array, List

List vs. Tree

Tree struct treenode { void *data; struct listnode *children; };

The same! Can we use this?

Math Review Discrete Structures

Rethinking Lists as Symbolic Expressions ("S-expressions")

Trees as S-expressions

MINES

Example: Arithmetic as S-expressions

Example: Boolean Formulae

S-expression

Dantam (Mines CSCI-534)

MINES

Differential Calculus

Dantam (Mines CSCI-534)

Chain Rule

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$
$$y = f(x) \text{ and } x = g(t) \quad \rightsquigarrow \quad \underbrace{\frac{d}{dt}f(g(t))}_{dy/dt} = \underbrace{f'(g(t))}_{dy/dx} \underbrace{\frac{d}{dt}g(t)}_{dx/dt}$$

$$\sin t^2$$

•
$$f = \sin \text{ and } g(t) = t^2$$

• $f' = \cos \text{ and } \dot{g}(t) = 2t$
• $\frac{d}{dt} \sin t^2 = \underbrace{(\cos t^2)}_{dy/dx} * \underbrace{(2t)}_{dx/dt}$

ln sin *t*

•
$$f = \ln \text{ and } g(t) = \sin t$$

• $f'(x) = \frac{1}{x} \text{ and } \dot{g}(t) = \cos t$
• $\underbrace{\frac{d}{dt} \ln \sin t}_{\frac{dy/dt}{dt}} = \underbrace{\left(\frac{1}{\sin t}\right)}_{\frac{dy/dx}{dt}} * \underbrace{(\cos t)}_{\frac{dx/dt}{dt}}$

Summary

What is Planning?

Course Logistics

Math Review Propositional Logic Discrete Structures Sets Functions Structures Symbolic Expressions Differential Calculus

