
Planning Graphs (Pre Lecture)

Dr. Neil T. Dantam

CSCI-534, Colorado School of Mines

Spring 2020

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 1 / 25



Outline

Planning Graphs
Construction
Analysis

Planning with Planning Graphs
GraphPlan
GraphPlan+SATPlan (BlackBox)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 2 / 25



Introduction

Planning Graphs

I A graph

I Represents structure of a planning
domain

I Useful as a heuristic

I Fast to construct

Outcomes
I Know the different parts of a

planning graph

I Construct the planning graph for a
given domain

I Use the planning graph to plan

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 3 / 25



Planning Graphs

Outline

Planning Graphs
Construction
Analysis

Planning with Planning Graphs
GraphPlan
GraphPlan+SATPlan (BlackBox)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 4 / 25



Planning Graphs

Planning Graph Overview

Nodes: literals ∪ actions

Edges: Transition: connects actions with precondition and effect literals,
(`× a) ∪ (a× `)

Mutex: conflicts (mutual exclusion) between actions and literals,
(`× `) ∪ (a× a)

Levels: Sequences of levels: timesteps

Start
State

action 0

...

action n

Step 1
Literals

action 0

...

action n

. . .

. . .

. . .

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 5 / 25



Planning Graphs

Example: Cake Domain

Operators

( de f i n e ( domain cake−domain )
( : p r e d i c a t e s ( have ?x )

( ea ten ?x ) )
( : ac t i on ea t : parameters (? x )

: p r e cond i t i o n ( have ?x )
: e f f e c t ( and ( not ( have ?x ) )

( ea ten ?x ) ) )
( : ac t i on bake : parameters (? x )

: p r e cond i t i o n ( not ( have ?x ) )
: e f f e c t ( and ( have ?x ) ) ) )

Facts

( de f i n e ( problem have−and−eat−cake )
( : domain cake−domain )
( : ob j e c t s cake )
( : i n i t ( have cake ) )
( : goa l ( and ( have cake )

( ea ten cake ) ) ) )

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 6 / 25



Planning Graphs

Example: Cake Planning Graph

have (cake)

¬eaten (cake)

nop

eat (cake)

nop

have (cake)

¬have (cake)

eaten (cake)

¬eaten (cake)

bake (cake)

nop

nop

eat (cake)

nop

nop

have (cake)

¬have (cake)

eaten (cake)

¬eaten (cake)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 7 / 25



Planning Graphs Construction

Plan Graph Construction

1. Begin with literals for start state

2. Repeatedly add levels:

2.1 Add persistence (nop) actions for each literal
2.2 Add feasible actions
2.3 Mark action mutexes
2.4 Mark literal mutexes

until next level is same as prior level (fixpoint)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 8 / 25



Planning Graphs Construction

Action Mutexes

Conflicting Effect: One action’s effect negates the other’s effect,

I eff (eat-cake) = eaten-cake ∧ ¬have-cake
I eff ( nop ( have-cake ) ) = have-cake
I ¬ (eff (eat-cake) ∧ eff ( nop ( have-cake ) ))

Conflicting Precondition: One action’s precondition is mutexed with the other’s precondition,

I pre (eat-cake) = have-cake
I pre (bake-cake) = ¬have-cake
I ¬ (pre (eat-cake) ∧ pre (bake-cake))

Interference: One action’s effect negates the other’s precondition,

I eff (eat-cake) = ¬have-cake
I pre ( nop ( have-cake ) ) = have-cake
I ¬ (eff (eat-cake) ∧ nop ( have-cake ))

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 9 / 25



Planning Graphs Construction

Literal Mutexes

Negation: One literal is the negation of the other,

I ¬ (have-cake ∧ ¬have-cake)
I ¬ (eaten-cake ∧ ¬eaten-cake)

Inconsistent Support: Each possible pair of actions to achieve both literals is mutually
exclusive
I Step 1:

I have-cake[1] =⇒ nop (have-cake)[0]

I eaten-cake[1] =⇒ eat-cake[0]

I conflicting effects: ¬
(
nop (have-cake)[0] ∧ eat-cake[0]

)
I Step 2:

I have-cake[2] =⇒
(
nop (have-cake)[1] ∨ bake-cake[1]

)
I eaten-cake[2] =⇒

(
nop (eaten-cake)[1] ∨ eat-cake[1]

)
I non-conflicting: bake-cake[1] ∧ nop (eaten-cake)[1]

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 10 / 25



Planning Graphs Construction

Exercise: Alternate Cake Domain

¬have (cake)

¬eaten (cake)

bake (cake)

nop

nop

have (cake)

¬have (cake)

¬eaten (cake)

bake (cake)

nop

nop

eat (cake)

nop

have (cake)

¬have (cake)

eaten (cake)

¬eaten (cake)

bake (cake)

nop

nop

eat (cake)

nop

nop

have (cake)

¬have (cake)

eaten (cake)

¬eaten (cake)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 11 / 25



Planning Graphs Construction

Exercise: Air Cargo

Operators
( de f i n e ( domain a i r−ca rgo )

( : p r e d i c a t e s ( p l ane ?x ) ( ca rgo ?x )
( a i r p o r t ? x ) ( at ?x ?y ) )

( : ac t i on f l y : parameters (? p ?x ?y )
: p r e cond i t i o n
( and ( p l ane ?p ) ( a i r p o r t ? x ) ( a i r p o r t ? y )

( at ?p ?x ) )
: e f f e c t ( and ( not ( a t ?p ?x ) ) ( at ?p ?y ) ) )

( : ac t i on l o ad : parameters (? c ?p ?a )
: p r e cond i t i o n
( and ( ca rgo ? c ) ( p l ane ?p ) ( a i r p o r t ?a )

( at ? c ?a ) ( at ?p ?a ) )
: e f f e c t ( and ( not ( a t ? c ?a ) ) ( at ? c ?p ) ) )

( : ac t i on un load : parameters (? c ?p ?a )
: p r e cond i t i o n
( and ( ca rgo ? c ) ( p l ane ?p ) ( a i r p o r t ?a )

( at ? c ?p ) ( at ?p ?a ) )
: e f f e c t ( and ( not ( a t ? c ?p ) ) ( at ? c ?a ) ) ) )

Facts
( de f i n e ( problem a i r )

( : domain a i r−ca rgo )
( : ob j e c t s cargo−0 cargo−1

plane−0 plane−1
ATL SFO)

( : i n i t ( ca rgo cargo−0 )
( ca rgo cargo−1 )
( p l ane plane−0 )
( p l ane plane−1 )
( a i r p o r t ATL)
( a i r p o r t SFO)
( at plane−0 ATL)
( at plane−1 SFO)
( at cargo−0 ATL)
( at cargo−1 SFO) )

( : goa l ( and ( a t cargo−0 SFO)
( at cargo−1 ATL) ) ) )

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 12 / 25



Planning Graphs Construction

Exercise: Air Cargo

at (p0, ATL)

at (c0, ATL)

at (p1, SFO)

at (c1, SFO)

nop

fly (p0, ATL, SFO)

nop

load (c0, p0, ATL)

nop

fly (p1, SFO, ATL)

nop

load (c1, p1, SFO)

at (p0, ATL)

¬at (p0, ATL)

at (p0, SFO)

at (c0, ATL)

¬at (c0, ATL)

at (c0, p0)

at (p1, SFO)

¬at (p0, SFO)

at (p1, ATL)

at (c1, SFO)

¬at (c1, SFO)

at (c1, p1)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 13 / 25



Planning Graphs Analysis

Termination of Planning Graph Construction

Theorem

Planning Graphs converge to a fixpoint in a finite number of steps.

Proof Outline

Graph elements increase or decrease monotonically over successive
levels:

Literals increase monotonically: Can always persist a literal

Actions increase monotonically: preconditions remain satisfied at
successive levels

Mutexes decrease monotonically: mutex at level i holds at all
levels below i

Eventually, can add no more literals or actions and can remove no
more mutexes.

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 14 / 25



Planning Graphs Analysis

Size of Planning Graphs

Theorem

Planning Graphs are polynomial in size of the planning domain.

Proof Outline
I p = |P| propositions, ` = 2p literals

I a = |A| actions
I Each level:

I a + ` nodes
I max a ∗ 2` transition edges (each action to every literal)
I max a2 + `2 mutex edges (each action/literal mutex with every

other)

I Polynomial number of levels due to monotonically
increasing/decreasing elements

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 15 / 25



Planning Graphs Analysis

Interpreting of Planning Graphs

Feasibility

I A literal not in the final level (fixpoint)
cannot be achieved of plan graph

I Mutexed literals: cannot both hold
I What if goal literals are mutex at end?

Heuristics

I Cost to achieve literal: level of the graph

I Cost to achieve conjunction:

Max-level: Maximum cost of arguments
Level-sum: Sum costs of arguments

Set-level: Level where all hold

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 16 / 25



Planning with Planning Graphs

Outline

Planning Graphs
Construction
Analysis

Planning with Planning Graphs
GraphPlan
GraphPlan+SATPlan (BlackBox)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 17 / 25



Planning with Planning Graphs

Overview

1. Successively add levels to the planning graph

2. At each level,

2.1 If the goals are not mutex, attempt to extract a plan from the graph
2.2 If no plan can be extracted, continue growing the graph

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 18 / 25



Planning with Planning Graphs GraphPlan

Plan Extraction: GraphPlan Proper

Backwards Search from Final Level:

1. Start from last level from graph

2. Select conflict free actions from predecessor level to achieve current goal

3. New goal is precondition of selected actions

4. Repeat

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 19 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

Plan Extraction: GraphPlan + SATPlan (BlackBox Planner)

1. Construct planning graph

2. Convert planning graph to Boolean formula

3. Check SAT

4. If UNSAT, repeat

BlackBox vs. SATPlan proper: mutex information

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 20 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

SATPlan Encoding
Transition Function

Operator Encoding: Selected operator’s preconditions and effects must hold:

oi
[k] =⇒


precondition at step k︷ ︸︸ ︷

pre(oi )
[k] ∧

effect at step k+1︷ ︸︸ ︷
eff(oi )

[k+1]



Operator Exclusion: One operator per step:
oi

[k] =⇒
(
¬o0[k] ∧ ¬o(i−1)[k] ∧ ¬o(i+1)

[k] ∧ ¬om[k]
)

Frame Axioms: Each proposition p is unchanged unless set by an effect:

(
p[k] = p[k+1]

)
∨

operators changing p︷ ︸︸ ︷(
oj

[k] ∨ . . . ∨ o`
[k]
)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 21 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

SATPlan vs. Blackbox Encoding
Transition Function

SATPlan Operator Exclusion: One operator per step:
oi

[k] =⇒
(
¬o0[k] ∧ ¬o(i−1)[k] ∧ ¬o(i+1)

[k] ∧ ¬om[k]
)

BlackBox Operator Exclusion: Multiple (non-conflicting) operators per step:{
oi

[k] =⇒ ¬oj [k]
∣∣ oi

[k] and oj
[k] are mutex

}

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 22 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

Blackbox Encoding
State Mutexes

{
¬
(
`i
[k] ∧ `j

[k]
) ∣∣∣ `i

[k] and `j
[k] are mutex

}

Additional constraint restricts search space.

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 23 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

Summary

Planning Graphs
Construction
Analysis

Planning with Planning Graphs
GraphPlan
GraphPlan+SATPlan (BlackBox)

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 24 / 25



Planning with Planning Graphs GraphPlan+SATPlan (BlackBox)

References

Textbook: Russell & Norvig.

I Ch 10.3 Planning Graphs

Dantam (Mines CSCI-534) Planning Graphs (Pre Lecture) Spring 2020 25 / 25


	Planning Graphs
	Construction
	Analysis

	Planning with Planning Graphs
	GraphPlan
	GraphPlan+SATPlan (BlackBox)


