## Sampling-based Motion Planning (Pre Lecture)

#### Dr. Neil T. Dantam

CSCI-534, Colorado School of Mines

Spring 2020



Dantam (Mines CSCI-534)



### Overview

- 1. Start from initial configuration
- 2. Sample new configurations
- 3. Construct and Add valid states to tree/graph
- 4. Terminate when:
  - We find a path to the goal
  - We exhaust a timeout / max samples



## Outcomes

- Know key abstractions in sampling-based motion planning
  - Robot Configuration Space
  - Metric Spaces
- Apply / Implement
   Rapidly-Exploring Random Trees (RRT)
- Apply / Implement
   Probabilistic Roadmaps (PRM)



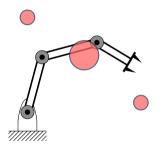
Sampling-Based Motion Planning

#### Outline

#### Sampling-Based Motion Planning

Metric Spaces

Rapidly-Exploring Random Trees (RRT)


Probabilistic Roadmaps (PRM)



Dantam (Mines CSCI-534)

Sampling-Based Motion Planning

#### Configuration Space



- ▶ Configuration Space Q
- ▶ Obstacle Region:  $Q_{obs} = \{q \in Q \mid \neg is-valid(q)\}$
- ▶ Free Space:  $\mathcal{Q}_{ ext{free}} = \{ q \in \mathcal{Q} \mid \texttt{is-valid}(q) \}$
- ► Total Space:
  - $\blacktriangleright \ \mathcal{Q}_{\rm obs} \cap \mathcal{Q}_{\rm free} = \emptyset$
  - $\blacktriangleright \ \mathcal{Q}_{\rm obs} \cup \mathcal{Q}_{\rm free} = \mathcal{Q}$

#### Generally: no explicit representation of $\mathcal{Q}_{\rm obs}$ , $\mathcal{Q}_{\rm free}$



#### Piano Mover's Problem

#### Definition

Piano Mover's Problem

- **Given:** Environment, Robot, Start and Goal configurations
  - World  $\mathcal{W}$  in  $\mathbb{R}^2$  or  $\mathbb{R}^3$
  - ▶ **Robot** in *W*: either a single or collection of rigid bodies
  - Configuration space Q for the robot
  - ▶ Initial configuration  $q_0 \in \mathcal{Q}_{\text{free}}$
  - ▶ Goal configuration  $q_G \in \mathcal{Q}_{\text{free}}$

**Find:** Valid path from  $q_0$  to  $q_G$ .

#### What data structure for "world" and "robot?"

We can define flexible abstractions.



Dantam (Mines CSCI-534)

## Fundamental Abstractions

 $\triangleright$  0

Configuration Space: Set of possible configurations

Configuration Sampler: Generates candidate configurations

► () 
$$\mapsto Q$$

Validity Checker: Is some configuration in  $\mathcal{Q}_{\rm free}?$ 



sample valid?

Nearest Neighbors: Closest point in tree/graph to new sample:



**b** Distance metric:  $Q \times Q \mapsto \mathbb{R}$ 

## Sampling-based motion planning generalizes beyond robotics.



Sampling-Based Motion Planning

### Motion Planning Problem, Redux

#### Definition

Piano Mover's Problem

- Given: Environment, Robot, Start and Goal configurations
  - World  $\mathcal{W}$  in  $\mathbb{R}^2$  or  $\mathbb{R}^3$
  - Robot in W: either a single or collection of rigid bodies
  - ► Configuration space *Q* for the robot
  - ▶ Initial configuration  $q_0 \in \mathcal{Q}_{\text{free}}$
  - Goal configuration  $q_{G} \in \mathcal{Q}_{ ext{free}}$

**Find:** Valid path from  $q_0$  to  $q_G$ .

#### Definition

Sampling-based Motion Planning

- **Given:** Metric state space, validity checker, start, goal
  - ▶ Q, state space
    - $\blacktriangleright \quad \text{Metric function: } \mathcal{Q} \times \mathcal{Q} \mapsto \mathbb{R}$
    - (Uniform) Sampler:  $q \sim Q$
  - $v: \mathcal{Q} \mapsto \{0, 1\}$ , validity checker
  - ▶  $q_0 \in Q$ , initial state
  - $q_g \sim G$ , goal sampler
- Find: Valid path from  $q_0$  to a  $q_g$ .



Metric Spaces

#### Outline

Sampling-Based Motion Planning

#### Metric Spaces

Rapidly-Exploring Random Trees (RRT)

Probabilistic Roadmaps (PRM)



Dantam (Mines CSCI-534)

#### Definition: Metric Space

#### Definition: Metric Space

A metric space is a space Q equipped with a function  $\rho : Q \times Q \mapsto \mathbb{R}$ that has the following properties for any  $a, b, c \in \mathcal{Q}$ Nonnegative:  $\rho(a, b) \ge 0$ (Distances are always greater than zero) Reflexive:  $(\rho(a, b) = 0) \iff (a = b)$ (Distance is zero only for identical elements) Symmetric:  $\rho(a, b) = \rho(b, a)$ (Distance from a to b is the same as from b to a) Triangle:  $\rho(a, b) + \rho(b, c) > \rho(a, c)$ (a to b to c cannot be shorter than directly from a to c)

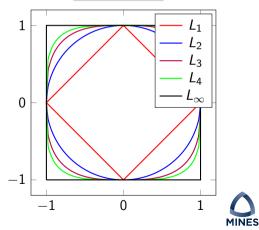


Metric Spaces

Example: Robot Joint Space and  $L_p$  metrics

$$\rho(x, x') = \left(\sum_{i=0}^{n-1} |x_i - x'_i|^p\right)^{\frac{1}{p}}$$

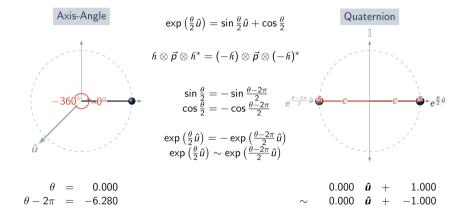
**Space:** 


 $\mathcal{Q} \subseteq \mathbb{R}^n$ , the set of robot joint positions

- Euclidean Distance:  $L_2(x, x') = \sqrt{\sum_{i=0}^{n-1} (x_i - x'_i)^2}$
- Manhattan Distance:  $L_1(x, x') = \sum_{i=0}^{n-1} |x_i - x'_i|$

$$\blacktriangleright \mathbf{L}_{\infty}:$$
  
$$L_{\infty}(x, x') = \max_{0 \le i \le n-1} (|x_i - x'_i|)$$








Dantam (Mines CSCI-534)

#### Example: Rotation Metric

Quaternion Double-Cover





## Example: Rotation Metric

**Distance Functions** 

$$\exp\left(rac{ heta}{2}\hat{u}
ight)=\sinrac{ heta}{2}\hat{u}+\cosrac{ heta}{2}$$

and

$$\exp\left(rac{ heta}{2}\hat{u}
ight)\sim \exp\left(rac{ heta-2\pi}{2}\hat{u}
ight)$$

## **Quaternion Space**

- $\blacktriangleright$  *L<sub>p</sub>* Norm:
  - ▶ min { ||p q||, ||p + q|| }
  - Length of 4D line segment
- ► 4D angle:
  - $\blacktriangleright \min \left\{ \cos^{-1} \left( q \cdot p \right), \cos^{-1} \left( -q \cdot p \right) \right\}$
  - Angle between 4D quaternions

 $\min\left\{\|\ln\left(q\otimes p^*\right)\|, \|\ln\left(-q\otimes p^*\right)\|\right\}$ 

Log Space

$$\blacktriangleright p \otimes h_r = q \rightsquigarrow h_r = q \otimes p^*$$

• Matrix: 
$$\| \ln \left( \mathbf{P} \mathbf{Q}^{-1} \right) \|$$



#### Exercise: Transformation Metric

Dual Quaternion:  $\rho(h_1 + d_1\varepsilon, h_2 + d_2\varepsilon)$ 

# Transformation Matrix: $\rho\left(\begin{bmatrix} \mathbf{R}_1 & \mathbf{v}_1 \\ \mathbf{0} & \mathbf{1} \end{bmatrix}, \begin{bmatrix} \mathbf{R}_2 & \mathbf{v}_2 \\ \mathbf{0} & \mathbf{1} \end{bmatrix}\right)$



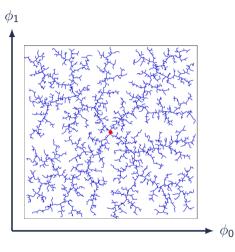
Dantam (Mines CSCI-534)

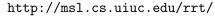
Rapidly-Exploring Random Trees (RRT)

#### Outline

Sampling-Based Motion Planning

Metric Spaces


Rapidly-Exploring Random Trees (RRT)


Probabilistic Roadmaps (PRM)



Dantam (Mines CSCI-534)

#### **RRT** Illustration





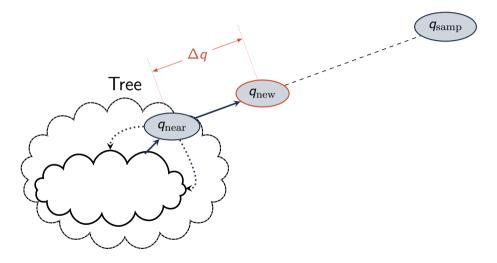
Dantam (Mines CSCI-534)



## **RRT** Algorithm

**Algorithm 1:** Rapidly-Exploring Random Tree Input:  $\phi_0 \in \mathcal{Q}$ : start Input:  $\Phi_{g} \subseteq Q$ : goal set 1  $V \leftarrow \{\phi_0\}$ ; // Tree nodes 2  $E \leftarrow \emptyset$ ; // Tree edges 3 for  $k \leftarrow 0$  to LIMIT do  $q_{\text{samp}} \leftarrow \text{sample}();$ 4  $q_{\text{near}} \leftarrow \text{nearest-neighbor}(V, q_{\text{samp}});$ 5  $q_{\text{new}} \leftarrow \text{new-conf}(q_{\text{near}}, q_{\text{samp}});$ 6 if valid( $q_{\text{new}}$ ) then 7 if  $\exists q \in \Phi_{g}$ , dist $(q, q_{\text{new}}) < \epsilon$  then 8 return path from  $q_0$  to  $q_{new}$ ; 9  $V \leftarrow V \cup \{q_{\text{new}}\};$ 10  $E \leftarrow E \cup \{q_{\text{near}} \rightarrow q_{\text{new}}\};$ 11

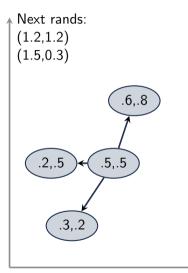
12 return TIMEOUT;


## Subroutines



- nearest-neighbor
- ▶ new-conf
- valid
- ▶ dist



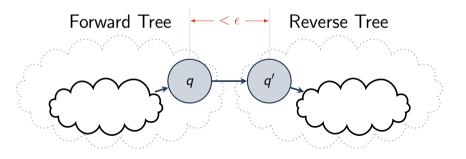

#### **RRT Step Illustration**





Rapidly-Exploring Random Trees (RRT)

#### Exercise: RRT-Step






## RRT-Connect

**Bi-directional RRT** 

- $1. \ \mbox{Construct}$  one RRT, rooted at the start
- 2. Construct second RRT, rooted at the goal
- 3. Terminate when the two trees connect





Probabilistic Roadmaps (PRM)

#### Outline

Sampling-Based Motion Planning

Metric Spaces

Rapidly-Exploring Random Trees (RRT)

Probabilistic Roadmaps (PRM)



Dantam (Mines CSCI-534)

Probabilistic Roadmaps (PRM)

**PRM** Overview

Preprocessing: Construct the Roadmap

- 1. Sample new configurations
- 2. Connect to "neighboring" configurations in roadmap

Query: Search the Roadmap

- 1. Find path in roadmap via discrete search (e.g.,  $A^*$ )
- 2. Connect subsequent configurations with "local planner" (interpolate)



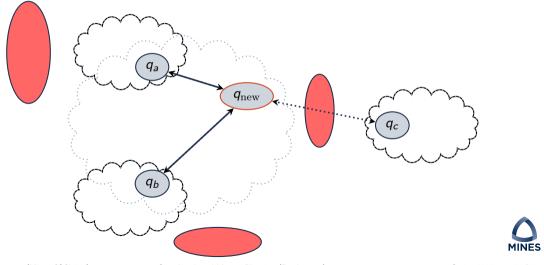
## **PRM** Construction

12 return Entern ENtines CSCI-534)

#### Algorithm

|    | Algorithm 2: Construct Probabilistic                             |
|----|------------------------------------------------------------------|
|    | Roadmap                                                          |
| 1  | $V \leftarrow \emptyset$ ; // Roadmap nodes                      |
| 2  | $E \leftarrow \emptyset;$ // Roadmap Edges                       |
| 3  | $k \leftarrow 0; //$ Iteration count                             |
| 4  | while $k < 	ext{LIMIT}$ do                                       |
| 5  | $q_{	ext{new}} \gets \texttt{sample}();$                         |
| 6  | if $	extsf{valid}(q_{	extsf{new}})$ then                         |
| 7  | $ig V \leftarrow V \cup \{q_{	ext{new}}\};$                      |
| 8  | $k \leftarrow k+1;$                                              |
| 9  | foreach $q \in \texttt{neighborhood}(q_{	ext{new}})$ do          |
| 10 | $\texttt{if} \neg \texttt{connected}(q,q_{\text{new}}) \land \\$ |
|    | $	ext{connect}(q,q_{	ext{new}})$ then                            |
| 11 | $E \leftarrow E \cup \{q \rightarrow q_{\text{new}}\};$          |
|    |                                                                  |

Neighbors:


- K-nearest neighbors (KNN)
- KNN from connected-components of V
- Radius (within 
   *e* distance)
- Connected Components:
  - Optional: do we want different paths?
  - Efficiency: Track as edges are added
- Connect: valid path exists
  - E.g., linearly interpolate and check validity



Probabilistic Roadmaps (PRM)

#### PRM Construction

#### Illustration



#### Practical Considerations

- ▶ Nearest Neighbors: Kd-tree (partitioning) or brute force (for high-dof)
- ► Collision Checking: Bounding-boxes then decompose into triangles
- Paths: Smooth and Shortcut
- Hundreds of variations on RRT, PRM, and similar methods
- RRT-Connect usually works pretty well

